Search results

1 – 10 of 55
Article
Publication date: 7 August 2017

Deepak Tiwari, Ahmad Faizan Sherwani, Mohammad Asjad and Akhilesh Arora

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and…

Abstract

Purpose

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and condensation dew point temperature) of a solar-driven organic Rankine cycle (ORC) on the first-law efficiency, the exergetic efficiency, the exergy destruction and the volume flow ratio (expander outlet/expander inlet).

Design/methodology/approach

Nine experiments as per Taguchi’s standard L9 orthogonal array were performed on the solar-driven ORC. Subsequently, multi-response optimization was performed using grey relational and principal component analyses.

Findings

The results revealed that the grey relational analysis along with the principal component analysis is a simple as well as effective method for solving the multi-response optimization problem and it provides the optimal combination of the solar-driven ORC parameters. Further, the analysis of variance was also employed to identify the most significant parameter based on the percentage of contribution of each cyclic parameter. Confirmation tests were performed to check the validity of the results which revealed good agreement between predicted and experimental values of the response variables at optimum combination of the input parameters. The optimal combination of process parameters is the set with A3 (the best fuel mixture in the context of optimal performance is 0.9 percent butane and 0.1 percent pentane by weight), B2 (evaporation bubble point temperature=358 K), C1 (condensation dew point temperature=300 K) and D3 (expander inlet temperature=370 K).

Research limitations/implications

In this research, the Taguchi-based grey relational analysis coupled with the principal components analysis has been successfully carried out, whereas for any optimized solution, it is required to have a real-time scenario that may be taken into consideration by the application of different soft computing techniques like genetic algorithm, simulated annealing, etc. The results generated are purely based on theoretical modeling, and, for further research, experimental analyses are required to consolidate the generated results.

Originality/value

This piece of research work will be helpful to users of solar energy, academicians, researchers and other concerned persons, in understanding the importance, severity and benefits obtained by the application, implementation and optimization of the cyclic parameters of the solar-driven ORC.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 14 April 2020

Axel Yezeguelian and Askin T. Isikveren

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated…

Abstract

Purpose

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated to tactical medium-altitude long-endurance (MALE) operations appear to have significant potential when hybrid-electric propulsion and power systems (HEPPS) are implemented. Beginning with a baseline Eulair drone, this paper aims to examine the feasibility of retro-fitting with an Autarkic-Parallel-HEPPS architecture to enhance performance of the original single diesel engine.

Design/methodology/approach

In view of the low gravimetric specific energy performance attributes of batteries in the foreseeable future, the best approach was found to be one in which the Parallel-HEPPS architecture has the thermal engine augmented by an organic rankine cycle (ORC). For this study, with the outer mould lines fixed, the goal was to increase endurance without increasing the Eulair drone maximum take-off weight beyond an upper limit of +10%. The intent was to also retain take-off distance and climb performance or, where possible, improve upon these aspects. Therefore, as the focus of the work was on power scheduling, two primary control variables were identified as degree-of-hybridisation for useful power and cut-off altitude during the en route climb phase. Quasi-static methods were used for technical sub-space modelling, and these modules were linked into a constrained optimisation algorithm.

Findings

Results showed that an Autarkic-Parallel-HEPPS architecture comprising an ORC thermal energy recovery apparatus and high-end year-2020 battery, the endurance of the considered aircraft could be increased by 11%, i.e. a total of around 28 h, including de-icing system, in-flight recharge and emergency aircraft recovery capabilities. The same aircraft with the de-icing functionality removed resulted in a 20% increase in maximum endurance to 30 h.

Practical implications

Although the adoption of Series/Parallel-HEPPS only solutions do tend to generate questionable improvements in UAV operational performance, combinations of HEPPS with energy recovery machines that use, for example, an ORC, were found to have merit. Furthermore, such architectural solutions could also offer opportunity to facilitate additional functions like de-icing and emergency aircraft recovery during engine failure, which is either not available for UAVs today or prove to be prohibitive in terms of operational performance attributes when implemented using a conventional PPS approach.

Originality/value

This technical paper highlights a new degree of freedom in terms of power scheduling during climbing transversal flight operations. A control parameter of cut-off altitude for all types of HEPPS-based aircraft should be introduced into the technical decision-making/optimisation/analysis scheme and is seen to be a fundamental aspect when conducting trade-studies with respect to degree-of-hybridisation for useful power.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2018

Chun-Wei R. Lin, Yuh-Jiuan Melody Parng and Yu-Lin Chen

Responding to natural resource depletion and carbon dioxide (CO2) emission problems, and also the stricter government’s energy regulations, the purpose of this paper is to develop…

Abstract

Purpose

Responding to natural resource depletion and carbon dioxide (CO2) emission problems, and also the stricter government’s energy regulations, the purpose of this paper is to develop a sustainable waste heat recovery optimal-profit-oriented management model especially targeting on the easily forgotten low- and medium-temperature waste heat in the industry. In the paper, a system is constructed to facilitate converting the low- and medium-grade waste heat in factories into electricity, and yields optimal profit.

Design/methodology/approach

This paper integrates an efficient Organic Rankine Cycle (ORC) system from both sustainable energy reservation and cost effectiveness approaches with an optimization model that adopts particle swarm optimization (PSO) algorithm to determine proper installation locations and feasible generator sets. The system is constructed to facilitate converting the low- and medium-grade waste heat in factories into electricity, and yields optimal profit. The model considers the environmental factors: temperature, heat amount, equipment configuration of the number of ORC sets, and detailed investment cost constraints.

Findings

The results show that annual investment return rate, annual increase in electricity, power generation efficiency, and annual CO2 emission reduction are all highly improved, and investment recovery period is shortened. Also, the larger scale of the waste heat emission, the better the performance is achieved. Finally, the study also completes a sensitivity test under dynamic conditions of electricity price, generator sales price and factory budget constraints, and the results are consistently robust. More valuably, this paper demonstrates applications on two different manufacturing industries with various waste heat emission scales to prove the accountability.

Originality/value

The main contributions are in three aspects. First, it proves that applying PSO to a nonlinear mathematical model can help determine the optimal number and style configuration of generators for waste heat sources. Second, different from the prior research works focusing on power generation, this paper also deliberates the cost factors, cost of generators, costs of numerous peripheral components and future maintenance costs to ensure the factories not conflict with the financial limitations. Third, it is not only successfully applied in two industries with different scales, but also robust with various economic tests, electricity price change, generator sales price change, and investment budget adjustments.

Details

Industrial Management & Data Systems, vol. 118 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 7 June 2019

Beata Maciejewska and Magdalena Piasecka

The purpose of this paper is to determine the time-dependent heat transfer coefficient during FC-72 flow boiling in a 1.7-mm-deep vertical and asymmetrically heated minichannel.

Abstract

Purpose

The purpose of this paper is to determine the time-dependent heat transfer coefficient during FC-72 flow boiling in a 1.7-mm-deep vertical and asymmetrically heated minichannel.

Design/methodology/approach

The temperature of the minichannel heated wall was recorded continuously with the use of thermocouples. The heat transfer coefficients for the subcooled and saturated boiling regions at the heated wall–fluid contact surface were calculated from the Robin boundary condition. Both the wall and fluid temperatures were obtained from the solution of the inverse nonstationary problems in two adjacent domains: the heated wall and flowing fluid. The FEM with Trefftz-type basis functions was applied to solve the inverse problem.

Findings

The obtained time-dependent heat transfer coefficient in subcooled boiling achieved rather low values, whereas in saturated boiling, the coefficient was the highest at the channel inlet. The boiling curves were plotted to illustrate the results.

Practical implications

The results of experiments are the best source of information for the design of minichannel cooling systems used for thermoregulation of components and heat exchangers. High-tech minichannel heat exchangers are applied in various industrial applications as microelectronics devices, gas turbines, internal combustion engines, nuclear reactors, X-ray sources and organic rankine cycle (ORC) modules.

Originality/value

In the study, the Trefftz functions for the nonstationary Fourier–Kirchhoff equation with the factor describing void fraction were determined and then used to construct the time-dependent basis functions in FEM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 June 2023

Mehdi Ebrahimi, David S-K. Ting and Rupp Carriveau

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced…

Abstract

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced. This technology can be made more sustainable by recovering the heat of the compression phase and reusing it during the discharge phase, resulting in an adiabatic CAES without the need for burning of fossil fuels. The key process parameters of CAES are temperature, pressure ratios, and the mass flow rates of air and thermal fluids. The variation in these parameters during the charge and discharge phases significantly influences the performance of CAES plants. In this chapter, the transient thermodynamic behavior of the system under various operating conditions is analyzed and the impact of heat recovery on the discharge phase energy efficiency, power generation, and CO2 emissions is studied. Simulations are carried out over the air pressure range from 2,500 to 7,000 kPa for a 65 MW system over a five-hour discharge duration. It is also assumed that the heat loss in the air storage and the hot thermal fluid tank is insignificant and standby duration does not impact the status of the system. This result shows that the system exergy and the generated power are more sensitive to pressure change at higher pressures. This work also reveals that every 10°C increase on the temperature of the stored air can lead to a 0.83% improvement in the energy efficiency. The result of the transient thermodynamic model is used to estimate the reduction in CO2 emissions in CAES systems. According to the obtained result, a 65 MW ACAES plant can reduce about 17,794 tons of CO2 emission per year compared to a traditional CAES system with the same capacity.

Article
Publication date: 26 August 2014

Stefano De Antonellis and Mario De Antonellis

The aim of the study is to identify main failure phenomena and to evaluate reparation costs, reparation time, loss of profit and their relationship with power plant and faulty…

Abstract

Purpose

The aim of the study is to identify main failure phenomena and to evaluate reparation costs, reparation time, loss of profit and their relationship with power plant and faulty components age. In this work, several machinery breakdowns occurred in thermal power plants fed by solid biomass, biodiesel, biogas and municipal solid waste, have been investigated. In the period between 2004 and 2012, 23 faults have been analyzed.

Design/methodology/approach

Each fault has been classified considering: power plant technical specifications, type of damage, reparation cost, reparation time and loss of profit (when data are available). The whole data have been, therefore, compared to find out significant information.

Findings

It has been pointed out that relevant property damages are mainly caused by old components failure. In addition, the loss of profit is generally much higher than the property damage (six times on average basis).

Originality/value

The study provides useful information that can be of interest for personnel of energy utilities, banks and insurance companies in managing power plants risks and in planning the availability of energy services.

Details

International Journal of Energy Sector Management, vol. 8 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 14 February 2022

Manish Kumar, Arun Arora, Raghwendra Banchhor and Harishankar Chandra

This paper aims to analyze energy and exergy analysis of solar-based intercooled and reheated gas turbine (GT) trigeneration cycle using parabolic trough solar collectors (PTC…

Abstract

Purpose

This paper aims to analyze energy and exergy analysis of solar-based intercooled and reheated gas turbine (GT) trigeneration cycle using parabolic trough solar collectors (PTC) with the use of MATLAB 2018.

Design/methodology/approach

In the first section of this paper, the solar-based GT is validated with the reference paper. According to the reference paper, the solar field is comprising 30 modules in series and 35 modules in parallel series, where a total of 1,050 modules of PTC are taken into consideration. In the second part of this paper, the hybridization of the solar, GT trigeneration cycle is analyzed and optimized. In the last section of this paper, the hybridization of solar, intercooled and reheated GT trigeneration systems is examined and compared.

Findings

The results examined the first section, the power produced by the cycle will be 37.34 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the efficiencies of energy and exergy will be 38.34% and 39.76%, respectively. The results examined in the second section, the power produced by the cycle will be 38.4 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and accordingly the efficiency of energy and exergy is found to be 40.011% and 41.763%. Where in the last section, the power produced by the cycle will be 41.43 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the energy and exergy efficiencies will be 39.76% and 40.924%, respectively.

Originality/value

The author confirms that this study is original and has neither been published elsewhere nor it is currently under consideration for publication elsewhere.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Book part
Publication date: 5 June 2023

Abstract

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Book part
Publication date: 6 November 2018

Bruno S. Sergi and Andrey Berezin

The chapter considers the significance of the oil and gas industry for the Russian economy. The authors analyze the current state of the oil and gas industry, their specific…

Abstract

The chapter considers the significance of the oil and gas industry for the Russian economy. The authors analyze the current state of the oil and gas industry, their specific weight in the structure of Russian GDP, and tax revenues from this industry to the Russian budget that was estimated. We give scenario analysis that considers the problems that the Russian economy may face because of the sanctions, the price fluctuations at the commodity market, and the crisis phenomena in the world economy. The chapter points out that localization of technology production and development of technologies for offshore oil and gas production in the Arctic zone may become an incentive to further ensure import substitution for Russia. At present, the experience of Arctic defense enterprises in the production of equipment for oil and gas production and processing is becoming increasingly popular. The chapter elaborates the most significant examples of the creation of new industries in the Arctic zone, the prospects of seismic exploration on the Arctic shelf, and that localization of production capacities and service bases will allow obtaining a multiplicative incentive for a qualitatively new industrial and infrastructure development of the northern territories. Also, we provide an assessment of the development of liquefied natural gas (LNG) industry, which makes economically attractive use of natural gas on a regional level as LNG opens the way to fuel high-power needs and to long-distance transport.

Article
Publication date: 11 April 2021

Lakhdar Bourabia, Cheikh Brahim Abed, Mahfoudh Cerdoun, Smail Khalfallah, Michaël Deligant, Sofiane Khelladi and Taha Chettibi

The purpose of this paper is the development of a new turbocharger compressor is a challenging task particularly when both wider operating range and higher efficiency are…

Abstract

Purpose

The purpose of this paper is the development of a new turbocharger compressor is a challenging task particularly when both wider operating range and higher efficiency are required. However, the cumbersome design effort and the inherent calculus burden can be significantly reduced by using appropriate design optimization approaches as an alternative to conventional design techniques.

Design/methodology/approach

This paper presents an optimization-based preliminary-design (OPD) approach based on a judicious coupling between evolutionary optimization techniques and a modified one-dimensional mean-line model. Two optimization strategies are considered. The first one is mono-objective and is solved using genetic algorithms. The second one is multi-objective and it is handled using the non-dominated sorting genetic algorithm-II. The proposed approach constitutes an automatic search process to select the geometrical parameters of the compressor, ensuring the most common requirements of the preliminary-design phase, with a minimum involvement of the designer.

Findings

The obtained numerical results demonstrate that the proposed tool can rapidly produce nearly optimal designs as an excellent basis for further refinement in the phase by using more complex analysis methods such as computational fluid dynamics and meta-modeling.

Originality/value

This paper outlines a new fast OBPD approach for centrifugal compressor turbochargers. The proposal adopts an inverse design method and consists of two main phases: a formulation phase and a solution phase. The complexity of the formulated problem is reduced by using a sensitivity analysis. The solution phase requires to link, in an automatic way, three processes, namely, optimization, design and analysis.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 55