Search results

1 – 10 of 657
Article
Publication date: 4 April 2024

Satyaveer Singh, N. Yuvaraj and Reeta Wattal

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Abstract

Purpose

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Design/methodology/approach

This paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.

Findings

The optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.

Originality/value

The heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 May 2023

Upama Dey, Aparna Duggirala and Souren Mitra

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing…

Abstract

Purpose

Aluminium alloys can be used as lightweight and high-strength materials in combination with the technology of laser beam welding, an efficient joining method, in the manufacturing of automotive parts. The purposes of this paper are to conduct laser welding experiments with Al2024 in the lap joint configuration, model the laser welding process parameters of Al2024 alloys and use propounded models to optimize the process parameters.

Design/methodology/approach

Laser welding of Al2024 alloy has been conducted in the lap joint configuration. Then, the influences of explanatory variables (laser peak power, scanning speed and frequency) on outcome variables (weld width [WW], throat length [TL] and breaking load [BL]) have been investigated with Poisson regression analysis of the data set derived from experimentation. Thereafter, a multi-objective genetic algorithm (MOGA) has been used using MATLAB to find the optimum solutions. The effects of various input process parameters on the responses have also been analysed using response surface plots.

Findings

The promulgated statistical models, derived with Poisson regression analysis, are evinced to be well-fit ones using the analysis of deviance approach. Pareto fronts have been used to demonstrate the optimization results, and the maximized load-bearing capacity is computed to be 1,263 N, whereas the compromised WW and TL are 714 µm and 760 µm, respectively.

Originality/value

This work of conducting laser welding of lap joint of Al2024 alloy incorporating the Taguchi method and optimizing the input process parameters with the promulgated statistical models proffers a neoteric perspective that can be useful to the manufacturing industry.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2024

Muhammet Uludag and Osman Ulkir

In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In…

Abstract

Purpose

In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.

Design/methodology/approach

The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.

Findings

Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.

Originality/value

It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 June 2023

Anshuman Kumar, Chandramani Upadhyay, Ram Subbiah and Dusanapudi Siva Nagaraju

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and…

Abstract

Purpose

This paper aims to investigate the influence of “BroncoCut-X” (copper core-ZnCu50 coating) electrode on the machining of Ti-3Al-2.5V in view of its extensive use in aerospace and medical applications. The machining parameters are selected as Spark-off Time (SToff), Spark-on Time (STon), Wire-speed (Sw), Wire-Tension (WT) and Servo-Voltage (Sv) to explore the machining outcomes. The response characteristics are measured in terms of material removal rate (MRR), average kerf width (KW) and average-surface roughness (SA).

Design/methodology/approach

Taguchi’s approach is used to design the experiment. The “AC Progress V2 high precision CNC-WEDM” is used to conduct the experiments with ϕ 0.25 mm diameter wire electrode. The machining performance characteristics are examined using main effect plots and analysis of variance. The grey-relation analysis and fuzzy interference system techniques have been developed to combine (called grey-fuzzy reasoning grade) the experimental response while Rao-Algorithm is used to calculate the optimal performance.

Findings

The hybrid optimization result is obtained as SToff = 50µs, STon = 105µs, Sw = 7 m/min, WT = 12N and Sv=20V. Additionally, the result is compared with the firefly algorithm and improved gray-wolf optimizer to check the efficacy of the intended approach. The confirmatory test has been further conducted to verify optimization results and recorded 8.14% overall machinability enhancement. Moreover, the scanning electron microscopy analysis further demonstrated effectiveness in the WEDMed surface with a maximum 4.32 µm recast layer.

Originality/value

The adopted methodology helped to attain the highest machinability level. To the best of the authors’ knowledge, this work is the first investigation within the considered parametric range and adopted optimization technique for Ti-3Al-2.5V using the wire-electro discharge machining.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2024

Ram Niwas and Vikas Kumar

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and…

Abstract

Purpose

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and percentage elongation (EL) of AZ91D/AgNPs/TiO2 hybrid composite fabricated by friction stir processing.

Design/methodology/approach

An empirical model has been developed to govern crucial influencing parameters, namely, rotation speed (RS), tool transverse speed (TS), number of passes (NPS) and reinforcement fraction (RF) or weight percentage. Box Behnken design (BBD) with four input parameters and three levels of each parameter was used to design the experimental work, and analysis of variance (ANOVA) was used to check the acceptability of the developed model. Desirability function analysis (DFA) for a multiresponse optimization approach is integrated with response surface methodology (RSM). The individual desirability index (IDI) was calculated for each response, and a composite desirability index (CDI) was obtained. The optimal parametric settings were determined based on maximum CDI values. A confirmation test is also performed to compare the actual and predicted values of responses.

Findings

The relationship between input parameters and output responses (UTS, YS, and EL) was investigated using the Box-Behnken design (BBD). Silver nanoparticles (AgNPs) and nano-sized titanium dioxide (TiO2) enhanced the ultimate tensile strength and yield strength. It was observed that the inclusion of AgNPs led to an increase in ductility, while the increase in the weight fraction of TiO2 resulted in a decrease in ductility.

Practical implications

AZ91D/AgNPs/TiO2 hybrid composite finds enormous applications in biomedical implants, aerospace, sports and aerospace industries, especially where lightweight materials with high strength are critical.

Originality/value

In terms of optimum value through desirability, the experimental trials yield the following results: maximum value of UTS (318.369 MPa), maximum value of YS (200.120 MPa) and EL (7.610) at 1,021 rpm of RS, 70 mm/min of TS, 4 NPS and level 3 of RF.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

1 – 10 of 657