Search results

1 – 10 of over 11000
Article
Publication date: 1 January 1992

R.J. Klein Wassink

Most footprints of surface mounted components have been calculated on the basis of the sizes and tolerances of their electrodes, taking into account the various inaccuracies of…

Abstract

Most footprints of surface mounted components have been calculated on the basis of the sizes and tolerances of their electrodes, taking into account the various inaccuracies of the mounting processes to be applied. The introduction of components with very small connecting areas or leads (e.g., fine pitch IC packages) does not only imply smaller solder land dimensions, but also a different approach for the calculation of the footprint. This approach tackles the question of the required insulation spacing and lead/land overlap, and the ‘optimum’ solder land dimensions and the available mounting (i.e., placing and fixing) freedom are then obtained. The reduction of mounting freedom with decreasing pitch distances is quantitatively demonstrated. The ratio width of lead/size of pitch proves to be an important parameter in this respect. Requirements for mounting quality are linked with certain criteria for inspection of soldered joints (for example, regarding shift and rotation and vice versa), and some of these criteria are discussed in more detail.

Details

Circuit World, vol. 18 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 8 July 2022

Mehtab Khan, Adnan Daud Khan, Muhammad Jawad, Zahoor Ahmad, Naveed Ur Rehman and Muhammad Israr

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application…

Abstract

Purpose

This paper aims to investigates a novel design of a modular moving magnet linear oscillating actuator (MMM-LOA) with the capability of coupling modules, based on their application and space requirements.

Design/methodology/approach

Proposed design comprised of modules, and modules are separated by using nonmagnetic materials. Movable part of the proposed design of LOA is composed of permanent magnets (PMs) having axial magnetization direction and tubular structure. Stator of the proposed design is composed of one coil individually in a module. Dimensions of the design parameters are optimized through parametric analysis using COMSOL Multi Physics software. This design is analyzed up to three modules and their response in term of electromagnetic (EM) force and stroke are presented. Influence of adding modules is analyzed for both directions of direct current (DC) and alternating input loadings.

Findings

Proposed LOA shows linear increase in magnitude of EM force by adding modules. Motor constant of the investigated LOA is 264 N/A and EM force per PM mass is 452.389 N/kg, that shows significant improvement. Moreover, proposed LOA operates in feasible region of stroke for compressor application. Furthermore, this design uses axially magnetized PMs which are low cost and available in compact tubular structure.

Originality/value

Proposed LOA shows the influence of adding modules and its effect in term of EM force is analyzed for DC and alternating current (AC). Moreover, overall performance and structural topology is compared with state-of-the-art designs of LOA. Improvement with regard of motor constant and EM force per PM mass shows originality and scope of this paper.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 1982

Professeur C. Kaspar

Au terme de notre 32e Congrès, j'éprouve le besoin de rendre hommage à tous ceux qui ont collaboré à la bonne marche collaborateurs de la réunion annuelle de notre association.

Abstract

Au terme de notre 32e Congrès, j'éprouve le besoin de rendre hommage à tous ceux qui ont collaboré à la bonne marche collaborateurs de la réunion annuelle de notre association.

Details

The Tourist Review, vol. 37 no. 4
Type: Research Article
ISSN: 0251-3102

Article
Publication date: 1 February 1996

B.X. Zhang, B.T.F. Chung and E.T. Lee

Defines the order preservation and operator uniqueness assumption and the active assumption. Under these assumptions, presents the invariance of optimum solution in a…

Abstract

Defines the order preservation and operator uniqueness assumption and the active assumption. Under these assumptions, presents the invariance of optimum solution in a multi‐objective fuzzy environment and gives illustrative examples. Presents applications, including in the heat transfer area, illustrated by numerical results and three dimensional figures. The results may have useful applications in fuzzy languages, fuzzy logics and other related areas.

Details

Kybernetes, vol. 25 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 June 1997

B.X. Zhang, B.T.F. Chung and Edward T. Lee

An efficient method utilizing a “max‐pro” optimum scheme for solving the “max‐min” decision function in a fuzzy optimization environment. The proposed method significantly…

Abstract

An efficient method utilizing a “max‐pro” optimum scheme for solving the “max‐min” decision function in a fuzzy optimization environment. The proposed method significantly simplifies the “max‐min” optimum solving problem, especially in the case when the number of objectives and constraints is large. Presents illustrative examples. The technique may also have valuable applications in solving general optimization problems with a piecewise‐smoothed objective function.

Details

Kybernetes, vol. 26 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 July 2021

Mustafa Turkyilmazoglu

This paper aims to seek purely analytical results relying on the physical parameters including the temperature jump parameter.

Abstract

Purpose

This paper aims to seek purely analytical results relying on the physical parameters including the temperature jump parameter.

Design/methodology/approach

The exponential fin profiles and heat transfer enhancement influenced by a temperature jump at the base are the main targets of this paper.

Findings

The introduced temperature slip at the base penetrates through the surface of the fin and reorganizes the distribution of temperature all over the surface. The overall impact of the temperature jump on the fin efficiency is such that it acts to lower the fin efficiency. However, the efficiency of the exponential fin is increasing for growing shape exponential fins as compared to the rectangular and decaying ones. Hence, exponential fins amenable to certain temperature jump has significance in technological cooling processes. Finally, the optimum dimensions regarding the base fin thickness and the fin length of the exponential profiles are assessed by means of optimizing the base heat transfer rate given a cross-sectional area.

Originality/value

Exact solutions are provided for optimum exponential type fins subjected to a temperature jump. The optimum dimensions regarding the base fin thickness and the fin length of the exponential profiles are assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2019

Reza Safaeian and Hossein Heydari

This paper aims to suggest the use of air or iron intervals between axially magnetized rings to increase the forces and stiffness of permanent magnet passive magnetic bearings…

Abstract

Purpose

This paper aims to suggest the use of air or iron intervals between axially magnetized rings to increase the forces and stiffness of permanent magnet passive magnetic bearings (PMBs). The paper calculates the stiffness of such bearings through an analytical method and optimizes the dimensions of the magnets for achieving maximum stiffness.

Design/methodology/approach

For determining the magnetic fields distribution, forces and stiffness of the bearings, a 2D analytical method is used, based on the subdomain method. For the sake of generalization, all of the parameters are normalized and optimized for maximum normalized stiffness per magnet volume ratio.

Findings

The optimum sizes of the magnets as well as the optimum dimensions of the air or iron intervals are calculated in this paper. The optimum sizes of the magnets are around the air gap length and it is very difficult to realize them. Using iron intervals can improve the stiffness to the extremely high values in practical dimensions of the magnets.

Originality/value

This paper presents a novel configuration for improving the performance of PMBs with alternately axially magnetized rings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 February 2007

Yu Wang, Michael Olorunyomi, Martin Dahlberg, Zoran Djurovic, Johan Anderson and Johan Liu

The ever present need for the miniaturization of electronic assemblies has driven the size of passive components to as small as the 01005 package size. However, the packaging…

Abstract

Purpose

The ever present need for the miniaturization of electronic assemblies has driven the size of passive components to as small as the 01005 package size. However, the packaging standards for these components are still under development. The purpose of this work is to report results from experiments designed to establish optimum process parameters, pad sizes and component clearances for the surface mounting of 01005 passive components.

Design/methodology/approach

The experiments were designed using MODDE, an experimental design software tool, and were carried out with both 01005 capacitors and resistors. All the assembled components were examined under microscope and judged according to industrial workmanship standards.

Findings

It was found that a viable solder paste printing process for the assembly of 01005 components can be achieved with a 75 μm thick stencil. Type 5 solder paste achieved a similar printing performance to type 4. Under the experimental conditions used, the optimum pad dimensions for the 01005 capacitors were 210 μm length, 220 μm width, 160 μm separation and for the resistors were 190 μm length, 220 μm width, 160 μm separation. The smallest component clearance to reliably avoid bridging was found to be 100 μm. A high placement force of 3.5 N was found to cause cracking of 01005 resistors.

Originality/value

From this work, a surface mount process for 01005 passive components is established and it is concluded that electronics packaging density can be increased through the assembly of these small components. In the near future, the widespread use of them will definitely facilitate a further reduction in the size of electronic assemblies, especially in handheld and portable devices.

Details

Soldering & Surface Mount Technology, vol. 19 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 March 2020

Mustafa Turkyilmazoglu

This paper aims to present an elegant exact solution in terms of elementary functions for a special pin fin without the classical length-of-arc approximation.

Abstract

Purpose

This paper aims to present an elegant exact solution in terms of elementary functions for a special pin fin without the classical length-of-arc approximation.

Design/methodology/approach

The temperature distribution along the fin and the surface function, both being the functions of a shape parameter, is inversely proportional to each other. The specialty of the spine is such that its shape and temperature profile are linked for a given Biot number.

Findings

Exact formulas for the pin fin tip temperature, pin fin base heat transfer rate, surface area of the spine and thermal fin efficiency are also given.

Originality/value

Without the traditional arc length assumption, the pin fin is shown to be an effective extended surface to remove the excessive heat from the hot surface it is pinned to. Optimum pin fin dimensions leading to the maximum base heat transfer rate are also worked out for a specified fin volume.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 October 2007

H. Al Nageim and D. Pountney

The aim is to present findings of a theoretical analysis for optimal design of a concrete trough for a new lightweight low‐profile rail track system.

Abstract

Purpose

The aim is to present findings of a theoretical analysis for optimal design of a concrete trough for a new lightweight low‐profile rail track system.

Design/methodology/approach

A non‐linear numerical optimisation technique is adopted to predict the minimum area of a pre‐tensioned pre‐stressed trough section satisfying the serviceability and ultimate limit states as per British Standard BS 8110 for critical loading and boundary conditions.

Findings

An optimum concrete trough section is calculated to carry all possible load combinations expected during the design life of the track. The performance of the rail, elastomeric pad and track base were found to be satisfactory under the same critical loading and boundary conditions.

Originality/value

The theoretical analysis gives a valuable insight into system parameter values that can optimise design performance and cost. However, these optimal design features now need to be tested experimentally.

Details

Construction Innovation, vol. 7 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 11000