Search results

1 – 10 of over 6000
Article
Publication date: 29 April 2014

Alexandru C. Berbecea, Frédéric Gillon and Pascal Brochet

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field…

Abstract

Purpose

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field of electrical engineering throughout discipline-based decomposition. The considered benchmark is a single-phase low voltage safety isolation transformer.

Design/methodology/approach

The multidisciplinary optimization of a safety isolation transformer is addressed within this paper. The bi-level collaborative optimization (CO) strategy is employed to coordinate the optimization of the different disciplinary analytical models of the transformer (no-load and full-load electromagnetic models and thermal model). The results represent the joint decision of the three distinct disciplinary optimizers involved in the design process, under the coordination of the CO's master optimizer. In order to validate the proposed approach, the results are compared to those obtained using a classical single-level optimization method – sequential quadratic programming – carried out using a multidisciplinary feasible formulation for handling the evaluation of the coupling model of the transformer.

Findings

Results show a good convergence of the CO process with the analytical modeling of the transformer, with a reduced number of coordination iterations. However, a relatively important number of disciplinary models evaluations were required by the local optimizers.

Originality/value

The CO multi-level methodology represents a new approach in the field of electrical engineering. The advantage of this approach consists in that it integrates decisions from different teams of specialists within the optimal design process of complex systems and all exchanges are managed within a unique coordination process.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2018

Naser Safaeian Hamzehkolaei, Mahmoud Miri and Mohsen Rashki

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and…

Abstract

Purpose

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and discrete variables. The gradient-based RBDO algorithms are less than satisfactory for these cases. The simulation-based approaches could also be computationally inefficient, especially when the double-loop strategy is used. This paper aims to present a pseudo-double loop flexible RBDO, which is efficient for solving problems, including both discrete/continuous variables.

Design/methodology/approach

The method is based on the hybrid improved binary bat algorithm (BBA) and weighed simulation method (WSM). According to this method, each BBA’s movement generates proper candidate solutions, and subsequently, WSM evaluates the reliability levels for design candidates to conduct swarm in a low-cost safe-region.

Findings

The accuracy of the proposed enhanced BBA and also the hybrid WSM-BBA are examined for ten benchmark deterministic optimizations and also four RBDO problems of truss structures, respectively. The solved examples reveal computational efficiency and superiority of the method to conventional RBDO approaches for solving complex problems including discrete variables.

Originality/value

Unlike other RBDO approaches, the proposed method is such organized that only one simulation run suffices during the optimization process. The flexibility future of the proposed RBDO framework enables a designer to present multi-level design solutions for different arrangements of the problem by using the results of the only one simulation for WSM, which is very helpful to decrease computational burden of the RBDO. In addition, a new suitable transfer function that enhanced convergence rate and search ability of the original BBA is introduced.

Article
Publication date: 14 March 2023

Jiahao Zhu, Guohua Xu and Yongjie Shi

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD…

Abstract

Purpose

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD) calculations and can be used to improve the efficiency of preliminary design.

Design/methodology/approach

An efficient method for helicopter fuselage shape optimization based on surrogate-based optimization is presented. Two numerical simulation methods are applied in different stages of optimization according to their relative advantages. The fast panel method is used to calculate the sample data to save calculation time for a large number of sample points. The initial solution is obtained by combining the Kriging surrogate model and the multi-island genetic algorithm. Then, the accuracy of the solution is determined by using the infill criteria based on CFD corrections. A parametric model of the fuselage is established by several characteristic sections and guiding curves.

Findings

It is demonstrated that this method can greatly reduce the calculation time while ensuring a high accuracy in the XH-59A helicopter example. The drag coefficient of the optimized fuselage is reduced by 13.3%. Because of the use of different calculation methods for samples, this novel method reduces the total calculation time by almost fourfold compared with full CFD calculations.

Originality/value

To the best of the authors’ knowledge, this is the first study to provide a novel method of fuselage drag optimization by combining different numerical simulation methods. Some suggestions on fuselage shape optimization are given for the XH-59A example.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 October 2015

Zheng Jiang, Haobo Qiu, Ming Zhao, Shizhan Zhang and Liang Gao

In multidisciplinary design optimization (MDO), if the relationships between design variables and some output parameters, which are important performance constraints, are complex…

Abstract

Purpose

In multidisciplinary design optimization (MDO), if the relationships between design variables and some output parameters, which are important performance constraints, are complex implicit problems, plenty of time should be spent on computationally expensive simulations to identify whether the implicit constraints are satisfied with the given design variables during the optimization iteration process. The purpose of this paper is to propose an ensemble of surrogates-based analytical target cascading (ESATC) method to tackle such MDO engineering design problems with reduced computational cost and high optimization accuracy.

Design/methodology/approach

Different surrogate models are constructed based on the sample point sets obtained by Latin hypercube sampling (LHS) method. Then, according to the error metric of each surrogate model, the repeated ensemble of surrogates is constructed to approximate the implicit objective functions and constraints. Under the framework of analytical target cascading (ATC), the MDO problem is decomposed into several optimization subproblems and the function of analysis module of each subproblem is simulated by repeated ensemble of surrogates, working together to find the optimum solution.

Findings

The proposed method shows better modeling accuracy and robustness than other individual surrogate model-based ATC method. A numerical benchmark problem and an industrial case study of the structural design of a super heavy vertical lathe machine tool are utilized to demonstrate the accuracy and efficiency of the proposed method.

Originality/value

This paper integrates a repeated ensemble method with ATC strategy to construct the ESATC framework which is an effective method to solve MDO problems with implicit constraints and black-box objectives.

Article
Publication date: 16 May 2016

Emad Elbeltagi, Mohammed Ammar, Haytham Sanad and Moustafa Kassab

Developing an optimized project schedule that considers all decision criteria represents a challenge for project managers. The purpose of this paper is to provide a…

1840

Abstract

Purpose

Developing an optimized project schedule that considers all decision criteria represents a challenge for project managers. The purpose of this paper is to provide a multi-objectives overall optimization model for project scheduling considering time, cost, resources, and cash flow. This development aims to overcome the limitations of optimizing each objective at once resulting of non-overall optimized schedule.

Design/methodology/approach

In this paper, a multi-objectives overall optimization model for project scheduling is developed using particle swarm optimization with a new evolutionary strategy based on the compromise solution of the Pareto-front. This model optimizes the most important decisions that affect a given project including: time, cost, resources, and cash flow. The study assumes each activity has different execution methods accompanied by different time, cost, cost distribution pattern, and multiple resource utilization schemes.

Findings

Applying the developed model to schedule a real-life case study project proves that the proposed model is valid in modeling real-life construction projects and gives important results for schedulers and project managers. The proposed model is expected to help construction managers and decision makers in successfully completing the project on time and reduced budget by utilizing the available information and resources.

Originality/value

The paper presented a novel model that has four main characteristics: it produces an optimized schedule considering time, cost, resources, and cash flow simultaneously; it incorporates a powerful particle swarm optimization technique to search for the optimum schedule; it applies multi-objectives optimization rather than single-objective and it uses a unique Pareto-compromise solution to drive the fitness calculations of the evolutionary process.

Details

Engineering, Construction and Architectural Management, vol. 23 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 December 2001

Mariusz Pyrz and Jadwiga Zawidzka

The potential of two distinct approaches applied to the truss discrete optimization problem is presented in the paper. The sequential discrete optimization method SDO (which is a…

Abstract

The potential of two distinct approaches applied to the truss discrete optimization problem is presented in the paper. The sequential discrete optimization method SDO (which is a deterministic procedure, using heuristics based on the idea of fully stressed truss design) and the genetic algorithm GA (a stochastic search method, inspired by the natural evolution model) are compared. The minimum weight design of truss structures subjected to stress and displacement constraints is investigated, including the case of multiple load conditions. The discrete design variables are areas of members, selected from a finite catalogue of available sections. Benchmark 2D and 3D problems are presented in numerical examples. The effectiveness of two approaches is discussed. The improvements of both algorithms and GA integrating the results of SDO method are proposed. They enable us to accelerate the convergence, diminish the number of structural analyses and guide to refined “near optimal” solutions.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 16 April 2018

Fábio Monteiro Conde, Pedro Gonçalves Coelho, Rodrigo Paiva Tavares, Pedro Castro Camanho, José Miranda Guedes and Helder Carriço Rodrigues

This study aims to achieve a “pseudo-ductile” behaviour in the response of hybrid fibre reinforced composites under uniaxial traction by solving properly formulated optimization

139

Abstract

Purpose

This study aims to achieve a “pseudo-ductile” behaviour in the response of hybrid fibre reinforced composites under uniaxial traction by solving properly formulated optimization problems.

Design/methodology/approach

The composite material model is based on the combination of different types of fibres (with different failure strains or strengths) embedded in a polymer matrix. The composite failure under tensile load is predicted by analytical models. An optimization problem formulation is proposed and a Genetic Algorithm is used. Multi-objective optimization problems balancing failure strength and ductility criteria are solved providing optimal mixtures of fibres whose properties may come either from a pre-defined list of materials, currently available in the market, or simply assuming their continuum variation within predefined bounds, in an attempt to attain unprecedented performance levels.

Findings

Optimal solutions of hybrid fibre reinforced composites exhibiting pseudo-ductile behaviour are presented. It is found that a fibre made from a material exhibiting relatively low stiffness combined with high strength is preferred for hybridization. Furthermore, the ratio of the average failure/critical strains between the low and high elongation fibres to be hybridized must be equal or greater than two.

Originality/value

Typically, a ductile failure is an inherent property of metals, that is, their typical response curve after the linear (elastic) region exhibits a yielding plateau still followed by an increase in stress till collapse. In stark contrast, composite materials exhibit (under some loading conditions) brittle failure that may limit their widespread usage. Therefore, a “pseudo-ductility” in composites is valued and targeted through optimization which is the main original contribution here.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 August 2023

Jianhui Liu, Ziyang Zhang, Longxiang Zhu, Jie Wang and Yingbao He

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of…

Abstract

Purpose

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.

Design/methodology/approach

First, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.

Findings

The TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.

Originality/value

The purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 6000