Search results

1 – 10 of 911
Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 1 July 2021

Subhrapratim Nath, Jamuna Kanta Sing and Subir Kumar Sarkar

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die…

Abstract

Purpose

Advancement in optimization of VLSI circuits involves reduction in chip size from micrometer to nanometer level as well as fabrication of a billions of transistors in a single die where global routing problem remains significant with a trade-off of power dissipation and interconnect delay. This paper aims to solve the increased complexity in VLSI chip by minimization of the wire length in VLSI circuits using a new approach based on nature-inspired meta-heuristic, invasive weed optimization (IWO). Further, this paper aims to achieve maximum circuit optimization using IWO hybridized with particle swarm optimization (PSO).

Design/methodology/approach

This paper projects the complexities of global routing process of VLSI circuit design in mapping it with a well-known NP-complete problem, the minimum rectilinear Steiner tree (MRST) problem. IWO meta-heuristic algorithm is proposed to meet the MRST problem more efficiently and thereby reducing the overall wire-length of interconnected nodes. Further, the proposed approach is hybridized with PSO, and a comparative analysis is performed with geosteiner 5.0.1 and existing PSO technique over minimization, consistency and convergence against available benchmark.

Findings

This paper provides high performance–enhanced IWO algorithm, which keeps in generating low MRST value, thereby successful wire length reduction of VLSI circuits is significantly achieved as evident from the experimental results as compared to PSO algorithm and also generates value nearer to geosteiner 5.0.1 benchmark. Even with big VLSI instances, hybrid IWO with PSO establishes its robustness over achieving improved optimization of overall wire length of VLSI circuits.

Practical implications

This paper includes implications in the areas of optimization of VLSI circuit design specifically in the arena of VLSI routing and the recent developments in routing optimization using meta-heuristic algorithms.

Originality/value

This paper fulfills an identified need to study optimization of VLSI circuits where minimization of overall interconnected wire length in global routing plays a significant role. Use of nature-based meta-heuristics in solving the global routing problem is projected to be an alternative approach other than conventional method.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2023

Vu Hong Son Pham, Nguyen Thi Nha Trang and Chau Quang Dat

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Abstract

Purpose

The paper aims to provide an efficient dispatching schedule for ready-mix concrete (RMC) trucks and create a balance between batch plants and construction sites.

Design/methodology/approach

The paper focused on developing a new metaheuristic swarm intelligence algorithm using Java code. The paper used statistical criterion: mean, standard deviation, running time to verify the effectiveness of the proposed optimization method and compared its derivatives with other algorithms, such as genetic algorithm (GA), Tabu search (TS), bee colony optimization (BCO), ant lion optimizer (ALO), grey wolf optimizer (GWO), dragonfly algorithm (DA) and particle swarm optimization (PSO).

Findings

The paper proved that integrating GWO and DA yields better results than independent algorithms and some selected algorithms in the literature. It also suggests that multi-independent batch plants could effectively cooperate in a system to deliver RMC to various construction sites.

Originality/value

The paper provides a compelling new hybrid swarm intelligence algorithm and a model allowing multi-independent batch plants to work in a system to deliver RMC. It fulfills an identified need to study how batch plant managers can expand their dispatching network, increase their competitiveness and improve their supply chain operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 April 2024

Liyi Zhang, Mingyue Fu, Teng Fei, Ming K. Lim and Ming-Lang Tseng

This study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.

Abstract

Purpose

This study reduces carbon emission in logistics distribution to realize the low-carbon site optimization for a cold chain logistics distribution center problem.

Design/methodology/approach

This study involves cooling, commodity damage and carbon emissions and establishes the site selection model of low-carbon cold chain logistics distribution center aiming at minimizing total cost, and grey wolf optimization algorithm is used to improve the artificial fish swarm algorithm to solve a cold chain logistics distribution center problem.

Findings

The optimization results and stability of the improved algorithm are significantly improved and compared with other intelligent algorithms. The result is confirmed to use the Beijing-Tianjin-Hebei region site selection. This study reduces composite cost of cold chain logistics and reduces damage to environment to provide a new idea for developing cold chain logistics.

Originality/value

This study contributes to propose an optimization model of low-carbon cold chain logistics site by considering various factors affecting cold chain products and converting carbon emissions into costs. Prior studies are lacking to take carbon emissions into account in the logistics process. The main trend of current economic development is low-carbon and the logistics distribution is an energy consumption and high carbon emissions.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 June 2022

Rafi Vempalle and Dhal Pradyumna Kumar

The demand for electricity supply increases day by day due to the rapid growth in the number of industries and consumer devices. The electric power supply needs to be improved by…

Abstract

Purpose

The demand for electricity supply increases day by day due to the rapid growth in the number of industries and consumer devices. The electric power supply needs to be improved by properly arranging distributed generators (DGs). The purpose of this paper is to develop a methodology for optimum placement of DGs using novel algorithms that leads to loss minimization.

Design/methodology/approach

In this paper, a novel hybrid optimization is proposed to minimize the losses and improve the voltage profile. The hybridization of the optimization is done through the crow search (CS) algorithm and the black widow (BW) algorithm. The CS algorithm is used for finding some tie-line systems, DG locations, and the BW algorithm is used for finding the rest of the tie-line switches, DG sizes, unlike in usual hybrid optimization techniques.

Findings

The proposed technique is tested on two large-scale radial distribution networks (RDNs), like the 119-bus radial distribution system (RDS) and the 135 RDS, and compared with normal hybrid algorithms.

Originality/value

The main novelty of this hybridization is that it shares the parameters of the objective function. The losses of the RDN can be minimized by reconfiguration and incorporating compensating devices like DGs.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 27 February 2024

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Dandan Wen, Jiake Li and Dandan Guo

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of…

Abstract

Purpose

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources.

Design/methodology/approach

The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model.

Findings

The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy.

Practical implications

This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users.

Social implications

The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans.

Originality/value

This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 911