Search results

1 – 10 of 54
Article
Publication date: 8 October 2018

Jalil Manafian and Cevat Teymuri sindi

This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the…

Abstract

Purpose

This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow problems.

Design/methodology/approach

This approach does not depend upon any small/large parameters. This method provides a convenient way to control the convergence of approximation series and to adjust convergence regions when necessary.

Findings

The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. By applying the method to nonlinear thin film flow problems, it was found to be simpler in applicability, and more convenient to control convergence. Therefore, the method shows its validity and great potential for the solution of nonlinear problems in science and engineering.

Originality/value

The proposed method is tested upon nonlinear thin film flow equation from the literature and the results are compared with the available approximate solutions including Adomian decomposition method (ADM), homotopy perturbation method, modified homotopy perturbation method and HAM. Moreover, the exact solution is compared with the available numerical solutions. The graphical representation of the solution is given by Maple and is physically interpreted.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

S. Saha Ray

The purpose of this paper is the comparative analysis of Haar Wavelet Method and Optimal Homotopy Asymptotic Method for fractional Fisher type equation. In this paper, two…

Abstract

Purpose

The purpose of this paper is the comparative analysis of Haar Wavelet Method and Optimal Homotopy Asymptotic Method for fractional Fisher type equation. In this paper, two reliable techniques, Haar wavelet method and optimal homotopy asymptotic method (OHAM), have been presented. The Haar wavelet method is an efficient numerical method for the numerical solution of fractional order partial differential equation like the Fisher type. The approximate solutions of the fractional Fisher-type equation are compared with those of OHAM and with the exact solutions. Comparisons between the obtained solutions with the exact solutions exhibit that both the featured methods are effective and efficient in solving nonlinear problems. However, the results indicate that OHAM provides more accurate value than the Haar wavelet method.

Design/methodology/approach

Comparisons between the solutions obtained by the Haar wavelet method and OHAM with the exact solutions exhibit that both featured methods are effective and efficient in solving nonlinear problems.

Findings

The comparative results indicate that OHAM provides a more accurate value than the Haar wavelet method.

Originality/value

In this paper, two reliable techniques, the Haar wavelet method and OHAM, have been proposed for solving nonlinear fractional partial differential equation, i.e. fractional Fisher-type equation. The proposed novel methods are well suited for only nonlinear fractional partial differential equations. It also exhibits that the proposed method is a very efficient and powerful technique in finding the solutions for the nonlinear time fractional differential equations. The main significance of the proposed method is that it requires less amount of computational overhead in comparison to other numerical and analytical approximate methods. The application of the proposed methods for the solutions of time fractional Fisher-type equations satisfactorily justifies its simplicity and efficiency.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Hany Hassan and Mohammad Mehdi Rashidi

– The paper aims to find an accurate analytic solution (series solution) for the micropolar flow in a porous channel with mass injection for different values of Reynolds number.

Abstract

Purpose

The paper aims to find an accurate analytic solution (series solution) for the micropolar flow in a porous channel with mass injection for different values of Reynolds number.

Design/methodology/approach

In this paper, the homotopy analysis method (HAM) with different numbers of unknown convergence-control parameters has been used to derive accurate analytic solution for micropolar flow in a porous channel with mass injection. The possible optimal value of convergence-control parameter determined by minimizing the averaged residual error.

Findings

The results obtained from HAM solution with two parameters are compared with numerical results and that obtained from HAM solution with only one parameter. The results show that this method gives an analytical solution with high order of accuracy with a few iterations. As shown in this paper, by minimizing the averaged residual error, the authors can get the possible optimal value of the convergence-control parameters which may give the fastest convergent series.

Practical implications

The HAM with different numbers of unknown convergence-control parameters can be used to obtain analytic solutions for many problems in sciences and engineering.

Originality/value

This paper fulfils an identified need to evaluate the accurate analytic solution (series solution) of practical problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 July 2021

Hamza Berrehal, G. Sowmya and Oluwole Daniel Makinde

In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over…

Abstract

Purpose

In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over particle size, shape and others. This paper aims to examine the effects of spherical and non-spherical (cylinder, disk, platelets, etc.) shapes of silver (Ag) nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption.

Design/methodology/approach

Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method (OHAM) and numerically via shooting technique coupled with the Runge-Kutta-Fehlberg (RK-F) method.

Findings

The impact of Ag nanoparticle’s shape along with other germane factors, such as Biot number, magnetic field, solid volume fraction and heat source/sink on velocity and thermal profiles, Nusselt number, skin friction coefficient, heat transfer enhancement, rate of entropy generation and irreversibility ratio, are scrutinized via graphical simulations and discussed. This study revealed that cylindrical shape Ag nanoparticles generate high entropy and fluid friction irreversibility, whereas disk shape Ag nanoparticles exhibit high transfer enhancement rate. Moreover, a boost in magnetic field intensity, volume-fraction parameter and Biot number enhances the thermal boundary layer thickness.

Originality/value

The main objective of this work is to examine the different Ag nanoparticles shape effects on the heat transfer enhancement and inherent irreversibility owing to hydromagnetic nanoliquid flow past a convectively heated stretching sheet with heat source/sink, which has not been yet studied. It is hope that this study will bridge the gap in the present literature and serve as impetus to scholars, engineers and industries for more exploration in this direction. The intrinsic nonlinearity of the model equations precludes its exact solution; hence, OHAM and shooting technique coupled with the RK-F method have been used to numerically tackle the problem. Pertinent results are discussed quantitatively and displayed graphically and in tabular form.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Memoona Bibi, Muhammad Sohail and Rahila Naz

The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk…

Abstract

Purpose

The purpose of this paper is to perform an analytical approximation for the flow of magnetohydrodynamic Carreau fluid with the association of nanoparticles over a rotating disk. The disk is moving with a constant uniform speed. Governing equations are obtained by using these assumptions in the form of partial differential equations with boundary conditions. These coupled, highly nonlinear equations are transformed into a coupled system of ordinary differential equations by engaging similarity transformation in the rotating frame of reference.

Design/methodology/approach

An efficient and reliable scheme, namely optimal homotopy asymptotic method, is used to obtain the solutions of the arising physical problem, which is further analyzed graphically. After computing the solutions of the arising problem, plots of velocities, temperature and concentration are discussed briefly.

Findings

It has been observed that dimensionless velocity reduced due to magnetic effect between the boundary layer and escalating values of the magnetic parameter upsurges the temperature and concentration profiles. Contour plots and numerical results are given for local numbers like skin friction coefficient, Nusselt number and Sherwood number.

Originality/value

The work presented in this manuscript is neither published nor submitted anywhere for the consideration/publications. It is a novel work.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2020

K. Vafai, Ambreen A. Khan, G. Fatima, Sadiq M. Sait and R. Ellahi

This paper aims to investigate the effect of Powell–Eyring fluid induced by a stretched sheet. Heat and mass transfer under the influence of magnetic dipole over a stretching…

Abstract

Purpose

This paper aims to investigate the effect of Powell–Eyring fluid induced by a stretched sheet. Heat and mass transfer under the influence of magnetic dipole over a stretching sheet are taken into account.

Design/methodology/approach

Nonlinear coupled governing equations are solved using the optimal homotopy asymptotic technique, and a computer software package BVPh 2.0 is used for numerical computations.

Findings

Impact of significant quantities is graphically examined. It is seen that the heat transfer deceases for higher values of viscous dissipation parameter, radiation parameter, Dufour number, whereas it increases for bigger values of Prandtl number. The numerical results have been validated through comparison with existing literature as a special case of proposed model and perceived that the Soret number has reining role to increase the rate of heat transfer.

Originality/value

To the best of the authors’ knowledge, this study is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2017

L. Ahmad Soltani, E. Shivanian and Reza Ezzati

The purpose of this paper is to present a new method based on the homotopy analysis method (HAM) with the aim of fast searching and calculating multiple solutions of nonlinear…

Abstract

Purpose

The purpose of this paper is to present a new method based on the homotopy analysis method (HAM) with the aim of fast searching and calculating multiple solutions of nonlinear boundary value problems (NBVPs).

Design/methodology/approach

A major problem with the previously modified HAM, namely, predictor homotopy analysis method, which is used to predict multiplicity of solutions of NBVPs, is a time-consuming computation of high-order HAM-approximate solutions due to a symbolic variable namely “prescribed parameter”. The proposed new technique which is based on traditional shooting method, and the HAM cuts the dependency on the prescribed parameter.

Findings

To demonstrate the computational efficiency, the mentioned method is implemented on three important nonlinear exactly solvable differential equations, namely, the nonlinear MHD Jeffery–Hamel flow problem, the nonlinear boundary value problem arising in heat transfer and the strongly nonlinear Bratu problem.

Originality/value

The more high-order approximate solutions are computable, multiple solutions are easily searched and discovered and the more accurate solutions can be obtained depending on how nonhomogeneous boundary conditions are transcribed to the homogeneous boundary conditions.

Article
Publication date: 25 February 2014

Majid Khan

In this article, the author proposed a new analytical solution procedure for 12 order differential equation. The new analytical technique namely homotopy analysis transform method

134

Abstract

Purpose

In this article, the author proposed a new analytical solution procedure for 12 order differential equation. The new analytical technique namely homotopy analysis transform method is efficient and effective for solving higher order differential equations. The results indicate the effectiveness and stability of the proposed algorithm. The paper aims to discuss these issues.

Design/methodology/approach

The author designed a new solution methodology for higher order differential equations which is a combination of Laplace transformation and homotopy deformation theory.

Findings

The author mainly discussed two numerical applications with error analysis of analytical scheme which shows high order accuracy of the projected technique which will serve as a milestone for solving higher order differential equations in engineering with no efforts.

Originality/value

The author proposed an innovative and original idea for nth-order differential equations in this article.

Details

Engineering Computations, vol. 31 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2017

Velinda Calvert and Mohsen Razzaghi

This paper aims to propose a new numerical method for the solution of the Blasius and magnetohydrodynamic (MHD) Falkner-Skan boundary-layer equations. The Blasius and MHD…

Abstract

Purpose

This paper aims to propose a new numerical method for the solution of the Blasius and magnetohydrodynamic (MHD) Falkner-Skan boundary-layer equations. The Blasius and MHD Falkner-Skan equations are third-order nonlinear boundary value problems on the semi-infinite domain.

Design/methodology/approach

The approach is based upon modified rational Bernoulli functions. The operational matrices of derivative and product of modified rational Bernoulli functions are presented. These matrices together with the collocation method are then utilized to reduce the solution of the Blasius and MHD Falkner-Skan boundary-layer equations to the solution of a system of algebraic equations.

Findings

The method is computationally very attractive and gives very accurate results.

Originality/value

Many problems in science and engineering are set in unbounded domains. One approach to solve these problems is based on rational functions. In this work, a new rational function is used to find solutions of the Blasius and MHD Falkner-Skan boundary-layer equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2014

D.D. Ganji and Mohammad Hatami

The purpose of this paper is to demonstrate the eligibility of the weighted residual methods (WRMs) applied to Jeffery-Hamel Flow. Selecting the most appropriate method among the…

Abstract

Purpose

The purpose of this paper is to demonstrate the eligibility of the weighted residual methods (WRMs) applied to Jeffery-Hamel Flow. Selecting the most appropriate method among the WRMs and discussing about Jeffery-Hamel flow's treatment in divergent and convergent channels are the other important purposes of the present research.

Design/methodology/approach

Three analytical methods (collocation, Galerkin and least square method) have been applied to solve the governing equations. The reliability of the methods is also approved by a comparison made between the forth order Runge-Kutta numerical method.

Findings

The obtained solutions revealed that WRMs can be simple, powerful and efficient techniques for finding analytical solutions in science and engineering non-linear differential equations.

Originality/value

It could be considered as a first endeavor to use the solution of the Jeffery-Hamel flow using these kind of analytical methods along with the numerical approach.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 54