Search results

1 – 10 of 12
Article
Publication date: 15 August 2023

Asmae El Jaouhari, Jabir Arif, Ashutosh Samadhiya, Anil Kumar, Vranda Jain and Rohit Agrawal

The purpose of this paper is to investigate, from a thorough review of the literature, the role of metaverse-based quality 4.0 (MV-based Q4.0) in achieving manufacturing…

Abstract

Purpose

The purpose of this paper is to investigate, from a thorough review of the literature, the role of metaverse-based quality 4.0 (MV-based Q4.0) in achieving manufacturing resilience (MFGRES). Based on a categorization of MV-based Q4.0 enabler technologies and MFGRES antecedents, the paper provides a conceptual framework depicting the relationship between both areas while exploring existing knowledge in current literature.

Design/methodology/approach

The paper is structured as a comprehensive systematic literature review (SLR) at the intersection of MV-based Q4.0 and MFGRES fields. From the Scopus database up to 2023, a final sample of 182 papers is selected based on the inclusion/exclusion criteria that shape the knowledge base of the research.

Findings

In light of the classification of reviewed papers, the findings show that artificial intelligence is especially well-suited to enhancing MFGRES. Transparency and flexibility are the resilience enablers that gain most from the implementation of MV-based Q4.0. Through analysis and synthesis of the literature, the study reveals the lack of an integrated approach combining both MV-based Q4.0 and MFGRES. This is particularly clear during disruptions.

Practical implications

This study has a significant impact on managers and businesses. It also advances knowledge of the importance of MV-based Q4.0 in achieving MFGRES and gaining its full rewards.

Originality/value

This paper makes significant recommendations for academics, particularly those who are interested in the metaverse concept within MFGRES. The study also helps managers by illuminating a key area to concentrate on for the improvement of MFGRES within their organizations. In light of this, future research directions are suggested.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 18 January 2023

Amirul Syafiq, Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO)…

Abstract

Purpose

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.

Design/methodology/approach

The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.

Findings

The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.

Research limitations/implications

Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.

Practical implications

The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.

Originality/value

This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 November 2023

Serap Kiriş and Muharrem Karaaslan

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…

Abstract

Purpose

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.

Design/methodology/approach

To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.

Findings

As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.

Originality/value

Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 September 2021

Sagar Juneja, Rajendra Pratap and Rajnish Sharma

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G…

Abstract

Purpose

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G network is operating, and hence antenna design for mmW 5G network is going to be significantly different. The purpose of this paper is to bring forth the unique challenges and opportunities of planar antenna design for mmW 5G network.

Design/methodology/approach

A lot of notable contemporary work has been investigated for this study and reported in this paper. A comparison of 4G and 5G technologies has been carried out to understand the difference between the air interface of two technologies that governs the antenna design. Important research gaps found after collating the work already done in the field have been bullet pointed for the use by many researchers working in this direction.

Findings

Several antenna design considerations have been laid out by the authors of this work, and it has been claimed that mmW 5G antenna design must satisfy these design considerations. In addition, prominent research gaps have been identified and thoroughly discussed.

Originality/value

As research in the field of mmW antenna design for 5G applications is still evolving, a lot of work is currently being done in this area. This study can prove to be important in understanding different challenges, opportunities and current state-of-art in the field of mmW planar antenna design for 5G cellular communication.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 October 2023

Sasireka Perumalsamy, Kavya G. and Rajkumar S.

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna…

Abstract

Purpose

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna operates from 3.1 to 10.6 GHz. The antenna finds its usage in on-body wearable device applications.

Design/methodology/approach

The antenna system measures 63.80 × 29.80 × 0.7 mm. The antenna radiating element is designed by using a modified dumbbell-shaped structure. Jean cloth material is used as substrate. The isolation improvement is achieved through spacing between two elements.

Findings

The proposed antenna has a very low mutual coupling of S21 < −20 dB and impedance matching of S11 < −10 dB. The radiation characteristics are stable in the antenna operating region. It provides as ECC < 0.01, diversity gain >9.9 dB. The antenna offers low average specific absorption rate (SAR) of 0.169 W/kg. The simulated and measured results are found to be in reasonable match.

Originality/value

The MIMO antenna is proposed for on-body communication, hence, a very thin jean cloth material is used as substrate. This negates the necessity of additional material usage in antenna design and the result range indicates good diversity performance and with a low SAR of 0.169 W/kg for on-body performance. This makes it a suitable candidate for textile antenna application.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 12