Search results

1 – 10 of 864
Article
Publication date: 23 October 2023

Shu-Hao Chang

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…

Abstract

Purpose

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.

Design/methodology/approach

Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.

Findings

The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.

Originality/value

Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 22 September 2023

Xinmin Peng, Lumin He, Shuai Ma and Martin Lockett

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance…

Abstract

Purpose

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance portfolio in terms of the nature of windows of opportunity has not been fully analyzed. This paper aims to explore how latecomer firms can build appropriate coalitions according to the nature of the window of opportunity to achieve technological catch-up in different catch-up phases.

Design/methodology/approach

Based on a longitudinal case study from 1984 to 2018 of Sunny Group, now a leading manufacturer of integrated optical components and products, this paper explores the process of technological catch-up of latecomer firms building different types of alliance portfolio in different windows of opportunity.

Findings

This paper finds that there is a sequence when latecomers build an alliance portfolio in the process of catch-up. When the uncertainty of opportunity increases, the governance mechanism of the alliance portfolio will change from contractual to equity-based. Also, latecomer firms build market-dominated and technology-dominated alliance portfolios to overcome their market and technology disadvantages, respectively.

Originality/value

These conclusions not only enrich the theory of latecomer catch-up from the perspective of windows of opportunity but also expand research on alliance portfolio processes from a temporal perspective.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 7 August 2021

Priya Singh, Vandana Niranjan and Ashwni Kumar

Recent advancements in the domain of smart communication systems and technologies have led to the augmented developments for very large scale integrated circuit designs in…

Abstract

Purpose

Recent advancements in the domain of smart communication systems and technologies have led to the augmented developments for very large scale integrated circuit designs in electro-magnetic applications. Increasing demands for low power, compact area and superior figure of merit–oriented circuit designs are the trends of the recent research studies. Hence, to accomplish such applications intended for optical communications, the transimpedance amplifier (TIA) was designed.

Design/methodology/approach

In this research work, the authors present a multi-layer active feedback structure which mainly composes a transimpedance stage and a gain stage followed by a low pass filter. This structure enables to achieve improved input impedance and superior gain. A simplified cascaded amplifier has also been designed in a hierarchical topology to improvise the noise effect further. The proposed TIA has been designed using Taiwan Semiconductor Manufacturing Company 45 nm complementary metal oxide semiconductor technology. Moreover, the thermal noise has been analyzed at −3 dB bandwidth to prove the reduction in thermal noise with increase in frequency for most of the devices used in the designed circuit.

Findings

The proposed differential TIA circuit was found to obtain the transimpedance gain of 50.1 dBO without applying any external bias current which is almost 8% improvised as compared to the conventional circuit. In addition to this, bandwidth achieved was 2.15 GHz along with only 38 W of power consumption, which is reasonably 100 times improvised in comparison of conventional circuit. Hence, the proposed differential TIA is suitable for the low power optical communications applications intended to work on low supply voltage.

Originality/value

The designed work is done by authors in university lab premises and is not copied from anywhere. To the best of the authors’ knowledge, it is 100% original.

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Helmi Hentati and Neila Boulila

This study aims to develop a maturity model designed for assessing the current state of digitization in accounting firms.

Abstract

Purpose

This study aims to develop a maturity model designed for assessing the current state of digitization in accounting firms.

Design/methodology/approach

The authors have developed this index where the maturity levels are defined from the life cycle theory. For the items of a maturity measure, the authors have adopted a multimethodological approach. That approach allows to identify 27 measurement items to cover the three dimensions of audit, reporting and taxation.

Findings

This research proposes a diagnostic tool specific to accounting firms. The authors have tested this index in the Tunisian context. The results show that there are two types of accounting firms. This study found the first firm in the embryonic phase and the other in the growth phase. This points out the active role of Tunisian accounting firms in technology integration.

Research limitations/implications

This study highlights the integration of technology in the accounting field. Specifically, it aims to address technology management in accounting firms by measuring the degree of digitization of accounting firms. This research projects the use of information technologies (artificial intelligence, cloud, big data, etc.) in auditing, reporting and taxation.

Practical implications

On a practical level, this research provides an organizational diagnostic tool to assess the status of their accounting firms in terms of digitization. This will motivate practitioners to make frequent assessments, thus contributing to continuous improvement toward digitization.

Originality/value

The theoretical foundation of this research is based on the theory of the life cycle of technologies. This study is using this theory to identify and describe the current phase of the organization. And that is by indicating the overall scores on the technological capabilities of the accounting firms.

Details

Journal of Accounting & Organizational Change, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1832-5912

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 15 December 2023

Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng and Tao Zhang

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Abstract

Purpose

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Design/methodology/approach

Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.

Findings

The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.

Originality/value

A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 April 2023

Evagelos Varthis and Marios Poulos

This study aims to present metaGraphos, a crowdsourcing system that aids in the transcription and semantic enhancement of scanned documents by using a pool of volunteers or people…

Abstract

Purpose

This study aims to present metaGraphos, a crowdsourcing system that aids in the transcription and semantic enhancement of scanned documents by using a pool of volunteers or people willing to participate in exchange for a financial reward.

Design/methodology/approach

The metaGraphos can be used in circumstances where optical character recognition fails to produce satisfactory results, semantic tagging or assigning thematic headings to texts is considered necessary or even when ground-truth data has to be collected in raw form.

Findings

The system automatically provides a Web-based interface comprising a static HTML page and JavaScript code that displays the scanned images of the document, coupled with the corresponding incomplete texts side by side, allowing users to correct or complete the texts in parallel.

Social implications

By assisting the parallel transcription and the semantic enhancement of difficult scanned documents, the system further reveals the hidden cultural wealth and aids in knowledge dissemination, a fact that contributes significantly to the academic-scientific dialog and feedback.

Originality/value

Individual researchers, libraries and organizations in general may benefit from the system because it is cost-effective, practical and simple to set up client–server architecture that provides a reliable way to transcribe texts or revise transcriptions on a large scale.

Details

Collection and Curation, vol. 42 no. 4
Type: Research Article
ISSN: 2514-9326

Keywords

Article
Publication date: 20 April 2023

Lezhi Ye, Xuanjie Song and Chang Yue

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement…

83

Abstract

Purpose

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.

Design/methodology/approach

The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.

Findings

The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.

Originality/value

Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 864