Search results

1 – 10 of 75
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 1 July 2021

Xiaochun Guan, Sheng Lou, Han Li and Tinglong Tang

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper…

2652

Abstract

Purpose

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper aims to give out a method for deployment the deep neural networks on a quad-rotor aircraft for further expanding its application scope.

Design/methodology/approach

In this paper, a design scheme is proposed to implement the flight mission of the quad-rotor aircraft based on multi-sensor fusion. It integrates attitude acquisition module, global positioning system position acquisition module, optical flow sensor, ultrasonic sensor and Bluetooth communication module, etc. A 32-bit microcontroller is adopted as the main controller for the quad-rotor aircraft. To make the quad-rotor aircraft be more intelligent, the study also proposes a method to deploy the pre-trained deep neural networks model on the microcontroller based on the software packages of the RT-Thread internet of things operating system.

Findings

This design provides a simple and efficient design scheme to further integrate artificial intelligence (AI) algorithm for the control system design of quad-rotor aircraft.

Originality/value

This method provides an application example and a design reference for the implementation of AI algorithms on unmanned aerial vehicle or terminal robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 5 January 2022

Alex Mason, Dmytro Romanov, L. Eduardo Cordova-Lopez, Steven Ross and Olga Korostynska

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of…

2283

Abstract

Purpose

Modern meat processing requires automation and robotisation to remain sustainable and adapt to future challenges, including those brought by global infection events. Automation of all or many processes is seen as the way forward, with robots performing various tasks instead of people. Meat cutting is one of these tasks. Smart novel solutions, including smart knives, are required, with the smart knife being able to analyse and predict the meat it cuts. This paper aims to review technologies with the potential to be used as a so-called “smart knife” The criteria for a smart knife are also defined.

Design/methodology/approach

This paper reviews various technologies that can be used, either alone or in combination, for developing a future smart knife for robotic meat cutting, with possibilities for their integration into automatic meat processing. Optical methods, Near Infra-Red spectroscopy, electrical impedance spectroscopy, force sensing and electromagnetic wave-based sensing approaches are assessed against the defined criteria for a smart knife.

Findings

Optical methods are well established for meat quality and composition characterisation but lack speed and robustness for real-time use as part of a cutting tool. Combining these methods with artificial intelligence (AI) could improve the performance. Methods, such as electrical impedance measurements and rapid evaporative ionisation mass spectrometry, are invasive and not suitable in meat processing since they damage the meat. One attractive option is using athermal electromagnetic waves, although no commercially developed solutions exist that are readily adaptable to produce a smart knife with proven functionality, robustness or reliability.

Originality/value

This paper critically reviews and assesses a range of sensing technologies with very specific requirements: to be compatible with robotic assisted cutting in the meat industry. The concept of a smart knife that can benefit from these technologies to provide a real-time “feeling feedback” to the robot is at the centre of the discussion.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1124

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 30 September 2021

Kittisak Makkawan and Thanyaphat Muangpan

Autonomous ports and digital ports are a modern trend of global commercial ports that are established to develop toward smart ports in many ports. Smart port indicators (SPIs) are…

1201

Abstract

Autonomous ports and digital ports are a modern trend of global commercial ports that are established to develop toward smart ports in many ports. Smart port indicators (SPIs) are used as important tools for measuring, encouraging, and indicating smart port performance. These are the main indicators to operate smart port management as the practical direction and port development planning are enclosed. This research aims to identify the SPIs and to develop a conceptual model of smart port performance in a case study of The Eastern Economic Corridor (EEC) in Thailand. Triangulation data are used in the data collection with three sources: the reviewed literature of five international databases in 2016–2021, participant observations, and in-depth interviews. Content analysis is utilized to analyze these data to develop a conceptual model approach. The findings of this research are shown in three main domains classified as smart port operation, smart port environment/energy, and smart port safety/security. These indicators represent 29 SPIs for developing smart port performance, which can be explained with a conceptual model. This information will exist as the foundation framework guiding Thai smart ports towards international standards of smart port efficiency.

Details

Journal of International Logistics and Trade, vol. 19 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of…

1917

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 25 November 2022

Pakorn Opasvitayarux, Siri-on Setamanit, Nuttapol Assarut and Krisana Visamitanan

The introduction of quality management Internet of things (QM IoT) can help food supply chain members to enhance real-time visibility, quality, safety and efficiency of products…

2826

Abstract

Purpose

The introduction of quality management Internet of things (QM IoT) can help food supply chain members to enhance real-time visibility, quality, safety and efficiency of products and processes. Current literature indicates three main research gaps, including a lack of studies in QM IoT in the food supply chain, the vagueness of integrative adoption of new technology framework and deficient research covering both adoption attitude and intention in the same model. This study aims to propose an analysis model based on the technological–organizational–environmental (TOE) framework and reinforced by the collaborative structure to capture the importance of the supply chain network.

Design/methodology/approach

The partial least square-structural equation modeling (PLS-SEM) was applied to test the impacts of the adoption factors on QM IoT adoption attitude and intention among 197 respondents in food manufacturing in Thailand.

Findings

The results indicated that compatibility, trialability, adaptive capacity, innovative capability, executive support, value chain partner pressure, presence of service provider and information sharing significantly impacted the attitude toward QM IoT adoption, while adaptive capability, innovative capability and information sharing directly influenced the QM IoT adoption intention. Furthermore, the attitude toward QM IoT adoption positively impacted the QM IoT adoption intention.

Practical implications

This study contributed to academicians by proposing a more solid adoption framework for QM IoT area. In addition, the business practitioners could actively prepare themselves for the QM IoT adoption, whereas the service providers could provide better and suitable service.

Originality/value

This research contributes to the building of a more solid framework and indicates significant factors that impact the attitude toward QM IoT adoption and adoption intention.

Details

Journal of International Logistics and Trade, vol. 20 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 21 July 2020

Prajowal Manandhar, Prashanth Reddy Marpu and Zeyar Aung

We make use of the Volunteered Geographic Information (VGI) data to extract the total extent of the roads using remote sensing images. VGI data is often provided only as vector…

1242

Abstract

We make use of the Volunteered Geographic Information (VGI) data to extract the total extent of the roads using remote sensing images. VGI data is often provided only as vector data represented by lines and not as full extent. Also, high geolocation accuracy is not guaranteed and it is common to observe misalignment with the target road segments by several pixels on the images. In this work, we use the prior information provided by the VGI and extract the full road extent even if there is significant mis-registration between the VGI and the image. The method consists of image segmentation and traversal of multiple agents along available VGI information. First, we perform image segmentation, and then we traverse through the fragmented road segments using autonomous agents to obtain a complete road map in a semi-automatic way once the seed-points are defined. The road center-line in the VGI guides the process and allows us to discover and extract the full extent of the road network based on the image data. The results demonstrate the validity and good performance of the proposed method for road extraction that reflects the actual road width despite the presence of disturbances such as shadows, cars and trees which shows the efficiency of the fusion of the VGI and satellite images.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 March 2020

Marco Fioriti, Silvio Vaschetto, Sabrina Corpino and Giovanna Premoli

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design…

1811

Abstract

Purpose

This paper aims to present the main results achieved in the frame of the TIVANO national-funded project which may anticipate, in a stepped approach, the evolution and the design of the enabling technologies needed for a hybrid/electric medium altitude long endurance (MALE) unmanned aerial vehicle (UAV) to perform persistent intelligence surveillance reconnaissance (ISR) military operations.

Design/methodology/approach

Different architectures of hybrid-propulsion system are analyzed pointing out their operating modes to select the more suitable architecture for the reference aircraft. The selected architecture is further analyzed together with its electric power plant branch focusing on electric system architecture and the selected electric machine. A final comparison between the hybrid and standard propulsion is given at aircraft level.

Findings

The use of hybrid propulsion may lead to a reduction of the total aircraft mass and an increase in safety level. However, this result comes together with a reduced performance in climb phase.

Practical implications

This study can be used as a reference for similar studies and it provides a detailed description of propulsion operating modes, power management, electric system and machine architecture.

Originality/value

This study presents a novel application of hybrid propulsion focusing on a three tons class MALE UAV for ISR missions. It provides new operating modes of the propulsion system and a detailed electric architecture of its powertrain branch and machine. Some considerations on noise emissions and infra-red traceability of this propulsion, at aircraft level.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15542

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 75