Search results

1 – 10 of over 6000
Article
Publication date: 23 August 2021

Xiao Fang, Yajie Zeng, Feng Xiong, Jiang Chen and Fei Cheng

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed…

Abstract

Purpose

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically.

Design/methodology/approach

In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared.

Findings

The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value.

Originality/value

At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.

Article
Publication date: 18 January 2013

Mohd Anwar Zawawi, Sinead O'Keffe and Elfed Lewis

The purpose of this paper is to provide a comparative review of intensity‐modulated fiber optic sensors with non‐optical sensors for health monitoring applications, from the…

1331

Abstract

Purpose

The purpose of this paper is to provide a comparative review of intensity‐modulated fiber optic sensors with non‐optical sensors for health monitoring applications, from the current research activities in the area.

Design/methodology/approach

A range of published research work in sensor design for four different health monitoring applications, including, lumbar spine bending, upper and lower limb motion tracking, respiration and heart rate monitoring, are presented and discussed in terms of their respective advantages and limitations.

Findings

This paper provides information on the various types of sensors applied into the health monitoring area. The sensing techniques of the fiber optic sensor for the stated applications are focused and compared in details to highlight their contributions.

Originality/value

A comparative review of published work is illustrated in an informative table content, to allow a clear idea of the current sensing approaches for health monitoring applications.

Article
Publication date: 1 May 2003

G. Stewart, B. Culshaw, W. Johnstone, G. Whitenett, K. Atherton and A. McLean

Describes the author's work on the development of fibre sensors and networks for monitoring trace gases such as methane, acetylene, carbon dioxide, carbon monoxide, hydrogen…

Abstract

Describes the author's work on the development of fibre sensors and networks for monitoring trace gases such as methane, acetylene, carbon dioxide, carbon monoxide, hydrogen sulphide and for detection of spills of gasoline, diesel and organic solvents, all of which are important in environmental and safety management. As an example, a 45‐point fibre optic sensor network has been installed on a landfill site to assess the distribution of methane generation across the site. System operation is based on near‐IR absorption and is currently being extended to monitor other gases such as carbon dioxide and hydrogen sulphide. Concurrently, research is being conducted on fibre lasers for the realisation of multi‐point, multi‐gas monitoring systems. Based on other principles (periodic micro‐bending loss effects), detection of hydrocarbon fuel spills has been demonstrated at multiple locations along the length of a specially designed fibre optic cable using standard optical time domain reflectometry (OTDR) measurements.

Details

Management of Environmental Quality: An International Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 1 January 1987

Roger Main

Roger Main gives a four‐part report on the optical technologies which are playing an increasingly important role in sensor development.

Abstract

Roger Main gives a four‐part report on the optical technologies which are playing an increasingly important role in sensor development.

Details

Sensor Review, vol. 7 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 18 January 2016

Maria Doubenskaia, Sergey Grigoriev, Ivan Zhirnov and Igor Smurov

This paper aims to propose methods for on-line monitoring and process quality assurance of Selective Laser Melting (SLM) technology as a competitive advantage to enhance its…

Abstract

Purpose

This paper aims to propose methods for on-line monitoring and process quality assurance of Selective Laser Melting (SLM) technology as a competitive advantage to enhance its implementation into modern manufacturing industry.

Design/methodology/approach

Monitoring of thermal emission from the laser impact zone was carried out by an originally developed pyrometer and a charge-coupled device (CCD) camera which were integrated with the optical system of the PHENIX PM-100 machine. Experiments are performed with variation of the basic process parameters such as powder layer thickness (0-120 μm), hatch distance (60-1,000 μm) and fabrication strategy (the so-called “one-zone” and “two-zone”).

Findings

The pyrometer signal from the laser impact zone and the 2D temperature mapping from HAZ are rather sensible to variation of high-temperature phenomena during powder consolidation imposed by variation of the operational parameters.

Research limitations/implications

Pyrometer measurements are in arbitrary units. This limitation is due to the difficulty to integrate diagnostic tools into the optical system of a commercial SLM machine.

Practical implications

Enhancement of SLM process stability and efficiency through comprehensive optical diagnostics and on-line control.

Originality/value

High-temperature phenomena in SLM were monitored coaxially with the laser beam for variation of several operational parameters.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 August 2021

Youn Ji Lee, Hyuk Jun Kwon, Yujin Seok and Sang Jeen Hong

The purpose of this paper is to demonstrate industrial Internet of Things (IIoT) solution to improve the equipment condition monitoring with equipment status data and process…

Abstract

Purpose

The purpose of this paper is to demonstrate industrial Internet of Things (IIoT) solution to improve the equipment condition monitoring with equipment status data and process condition monitoring with plasma optical emission spectroscopy data, simultaneously. The suggested research contributes e-maintenance capability by remote monitoring in real time.

Design/methodology/approach

Semiconductor processing equipment consists of more than a thousand of components, and unreliable condition of equipment parts leads to the failure of wafer production. This study presents a web-based remote monitoring system for physical vapor deposition (PVD) systems using programmable logic controller (PLC) and Modbus protocol. A method of obtaining electron temperature and electron density in plasma through optical emission spectroscopy (OES) is proposed to monitor the plasma process. Through this system, parts that affect equipment and processes can be controlled and properly managed. It is certainly beneficial to improve the manufacturing yield by reducing errors from equipment parts.

Findings

A web-based remote monitoring system provides much of benefits to equipment engineers to provide equipment data for the equipment maintenance even though they are physically away from the equipment side. The usefulness of IIoT for the e-maintenance in semiconductor manufacturing domain with the in situ monitoring of plasma parameters is convinced. The authors found the average electron temperature gradually with the increase of Ar carrier gas flow due to the increased atomic collisions in PVD process. The large amount of carrier gas flow, in this experimental case, was 90 sccm, dramatically decreasing the electron temperature, which represents kinetic energy of electrons.

Research limitations/implications

Semiconductor industries require high level of data security for the protection of their intellectual properties, and it also falls into equipment operational condition; however, data security through the Internet communication is not considered in this research, but it is already existing technology to be easily adopted by add-on feature.

Practical implications

The findings indicate that crucial equipment parameters are the amount of carrier gas flow rate and chamber pressure among the many equipment parameters, and they also affect plasma parameters of electron temperature and electron density, which directly affect the quality of metal deposition process result on wafer. Increasing the gas flow rate beyond a certain limit can yield the electron temperature loss to have undesired process result.

Originality/value

Several research studies on data mining with semiconductor equipment data have been suggested in semiconductor data mining domain, but the actual demonstration of the data acquisition system with real-time plasma monitoring data has not been reported. The suggested research is also valuable in terms of high cost and complicated equipment manufacturing.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 6 February 2017

Bartlomiej Guzowski, Roman Gozdur, Mateusz Lakomski and Lukasz Bernacki

The purpose of this paper is to develop identification system for fiber optic connectors in passive distribution cabinets. The system should have alternative power supply and…

Abstract

Purpose

The purpose of this paper is to develop identification system for fiber optic connectors in passive distribution cabinets. The system should have alternative power supply and wireless communication unlike the identification systems commercially available, which will make the system fully autonomous.

Design/methodology/approach

Detailed project and realization of real demonstrator of fully autonomous identification system. After the realization of the demonstrator, its optimization was performed.

Findings

It is possible to build fully autonomous identification system which requires 15.6 mJ energy to perform one cycle of identification process. Moreover, it is possible to use the alternative power method to supply this system.

Originality/value

Fully autonomous identification system of fiber optic connectors with alternative power supply and wireless communication.

Details

Circuit World, vol. 43 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 March 2012

Giuseppe Dell'Anno, Ivana Partridge, Denis Cartié, Alexandre Hamlyn, Edmon Chehura, Stephen James and Ralph Tatam

The purpose of this paper is to focus on exploring an innovative combination of cutting‐edge technologies to be implemented within automated processes for composite parts…

1261

Abstract

Purpose

The purpose of this paper is to focus on exploring an innovative combination of cutting‐edge technologies to be implemented within automated processes for composite parts manufacturing. The objective is the design of a production route for components with tailored fibre orientation and ply lay‐up, with improved damage tolerance thanks to through‐the‐thickness reinforcement and integrated health monitoring systems based on optical fibres technology. This study is part of the FP7 project ADVITAC.

Design/methodology/approach

The proposed technologies are described in detail and their compatibility and potential for integration are discussed.A set up for on‐line monitoring of infusion and curing processes of carbon/epoxy laminates preformed by dry fibre placement technology is proposed, and a preliminary study of their mechanical performance is presented. The possibility of reinforcing through‐the‐thickness preforms manufactured with dry slit tapes automatically laid‐up and consolidated by laser heating is investigated.

Findings

Improved knowledge was obtained of interaction/compatibility between the discussed technologies and scope for application.

Research limitations/implications

The paper reports the technical potential and practical feasibility of the proposed integrated production process. Limited quantitative evaluations on the materials performance are provided. The analysis of the technologies involved represents the early outcome of the ongoing ADVITAC project.

Practical implications

This study contributes to the identification of a new generation of composite architecture which allows production cost and weight savings while retaining the level of quality suitable for demanding structural applications, with particular relevance to the aerospace field.

Originality/value

This paper investigates for the first time the practical possibility of designing a single automated process involving dry fibre placement, tufting and optical fibre sensor monitoring for the production of complex composite components.

Details

International Journal of Structural Integrity, vol. 3 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 April 2018

Yongxing Guo, Jianjun Fu, Longqi Li and Li Xiong

Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability…

Abstract

Purpose

Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability mechanisms. Simply observing the slope landslide before and after a centrifugal model test cannot reveal the processes involved in real-time deformation. Electromagnetic sensors have severed as an existing method for real-time measurement, however, this approach has significant challenges, including poor signal quality, interference, and complex implementation and wiring schemes. This paper aims to overcome the shortcomings of the existing measurement methods.

Design/methodology/approach

This work uses the advantages of fiber Bragg grating (FBG) sensors with their small form-factor and potential for series multiplexing in a single fiber to demonstrate a monitoring strategy for model centrifugal tests. A slope surface deformation displacement sensor, FBG anchor sensor and FBG anti-slide piling sensor have been designed. These sensors are installed in the slope models, while centrifugal acceleration tests under 100 g are carried out.

Findings

FBG sensors obtain three types of deformation information, demonstrating the feasibility and validity of this measurement strategy.

Originality/value

The experimental results provide important details about instability mechanisms of a slope, which has great significance in research on slope model monitoring techniques and slope stability.

Article
Publication date: 17 April 2023

Christopher Stutzman, Andrew Przyjemski and Abdalla R. Nassar

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased…

Abstract

Purpose

Powder bed fusion processes are common due to their ability to build complex components without the need for complex tooling. While additive manufacturing has gained increased interest in industry, academia and government, flaws are often still generated during the deposition process. Many flaws can be avoided through careful processing parameter selections including laser power, hatch spacing, spot size and shielding gas flow rate. The purpose of this paper is to study the effect of shielding gas flow on vapor plume behavior and on final deposition quality. The goal is to understand more fully how each parameter affects the plume and deposition process.

Design/methodology/approach

A filtered-photodiode based sensor was mounted onto a commercial EOS M280 machine to observed plume emissions. Three sets of single tracks were printed, each with one of three gas flow rates (nominal, 75% nominal and 50% nominal). Each set contained single-track beads deposited atop printed pedestals to ensure a steady-state, representative build environment. Each track had a set power and speed combination which covered the typical range of processing parameters. After deposition, coupons were cross-sectioned and bead width and depth were measured. Finally, bead geometry was compared to optical emissions originating in the plume.

Findings

The results show that decreasing gas flow rate, increasing laser power or increasing scan speed led to increased optical emissions. Furthermore, decreasing the gas cross-flow speed led to wider and shallower melt pools.

Originality/value

To the best of the authors’ knowledge, this paper is among the first to present a relationship among laser parameters (laser power, scan speed), gas flow speed, plume emissions and bead geometry using high-speed in situ data in a commercial machine. This study proposes that scattering and attenuation from the plume are responsible for deviations in physical geometry.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 6000