Search results

1 – 10 of over 143000
Article
Publication date: 20 January 2021

P.S. Ramesh and J.V. Muruga Lal Jeyan

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to…

Abstract

Purpose

Amongst all classes of unmanned aircraft system (UAS), the rise of the Mini UAS class is the most dominant. Mini UASs are field-deployable systems and hence are not expected to operate from a runway. Therefore, the operating terrain plays an important role in the deployment and employment of the Mini UAS. However, there is limited published work in this area. The impact of terrain is more critical for military applications than civilian applications. The purpose of this paper is to explore the implications of various types of terrain on the employment and deployment of Mini UAS.

Design/methodology/approach

This paper explores the implications of various types of terrain on the employment and deployment of Mini UAS.

Findings

Mini UAS with field deployable requirements is often launched within the tactical battle area in case of military applications or in close proximity to the intended target area for civilian applications. Due to the size and weight of the Mini UAS, launch and recovery becomes an important factor to be considered. Rotary wing or fixed-wing vertical take-off and landing configuration UAS overcomes the limitations of Mini UAS and hence it is the preferred option. Impact of the terrain is significantly higher for military applications as compared to civil applications. Mountain terrain is the most challenging for Mini UAS operations.

Practical implications

This paper will help the designers configure the UAS as per the operating terrain.

Originality/value

Terrain affects the deployment and employment of Mini UAS and the capabilities of the system with respect to terrain in which it is expected to operate must be considered during the design of a Mini UAS. The paper will help the designers configure the UAS as per the operating terrain.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 January 2006

Muthukumaran Packirisamy

To predict the influence of inherent microfabrication and operating environmental influences on the performance of capacitive type sensors and actuators so that one can tune the…

1112

Abstract

Purpose

To predict the influence of inherent microfabrication and operating environmental influences on the performance of capacitive type sensors and actuators so that one can tune the performance and carry out more realistic designs.

Design/methodology/approach

When the sensors and actuators are micromachined or microfabricated, they are subjected to special problems that are characteristic to microdimensions. The important concerns are the influence of microfabrication process on the material properties and influence of operating environment on the system behavior. Hence, this paper proposed a way of quantifying and modeling the influence of inherent limitations of microfabrication and operating environment for the better design of micromachined capacitive type sensors and actuators. The methodology applies the modeling the variation of the elastic property of the system due to above influences through elastic stiffening and weakening concepts. The approach includes the application of boundary conditioning concept through Rayleigh energy method.

Findings

The microfabrication process and electrostatic field can alter significantly both static and dynamic behavior of the device. The performance of the device could also be tuned through these influences.

Research limitations/implications

As the displacement of the sensors is expected to be small, linear approach is applied. The sensitivity, output range, operating limits and natural frequencies of the sensor can be easily controlled by varying the process and operating environmental influences.

Practical implications

Improved and more realistic design of microfabricated capacitive type sensors and actuators for many applications, such as, pressure sensors, microphones, microspeakers, etc.

Originality/value

A simple and easy way of modeling and quantifying the influence of process and operating environment was proposed for the betterment of design. The proposed design method can be applied for any micromachined or microfabricated capacitive type sensors and actuators so that varying sensitivities, output ranges and natural frequencies could be obtained. Over the last few years, newly emerging micro‐electro‐mechanical‐systems (MEMS) technology and micro‐fabrication techniques have gained popularity and importance in the miniaturization of a variety of sensors and actuators. The proposed technique is very useful in making the field of MEMS more matured as it attempts to model the problems that are unique to MEMS environment.

Details

Sensor Review, vol. 26 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 1957

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’…

Abstract

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’ of large clearance. Experiments involving flow visualization with very large clearance ratios of 0.05 to 0.3 show that the laminar regime gives way to cellular or ring vertices at the critical Reynolds number predicted by G. I. Taylor for concentric cylinders even in the presence of an axial flow and at a rather higher Reynolds number in the case of eccentric cylinders. The effect of the transition on the axial flow between the cylinders is small. The critical speed for transition as deduced by Taylor, is little affected by moderate axial flows and is increased by eccentricity. The effect of critical condition on the axial‐flow characteristics of the bearing system appears to be negligible, again for moderate axial flows. Assuming that the results can be extrapolated to clearances applicable to bearing operation, the main conclusion of this paper is that the breakdown of laminar flow, which is a practical possibility in very high‐speed bearings, is delayed by eccentric operation.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 September 1975

Airscrew Howden Ltd

The Westland Lynx helicopter is a particularly fine example of the use of advanced fan technology in modern aircraft applications. The firm of Airscrew Howden have come a long way…

Abstract

The Westland Lynx helicopter is a particularly fine example of the use of advanced fan technology in modern aircraft applications. The firm of Airscrew Howden have come a long way from their original manufacture of the wooden ‘prop’ but they still continue to play a very essential part in all types of aircraft flying today; this takes the form of sophisticated fan designs to cover a wide variety of special air‐movement requirements that can arise in this sector.

Details

Aircraft Engineering and Aerospace Technology, vol. 47 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 2010

Vahid Labbaf Khaniki and Nasser Seraj Mehdizadeh

The aim of this paper is to find the optimal values of the reaction rates coefficients for the combustion of a methane/air mixture for a given reduced reaction mechanism which has…

Abstract

Purpose

The aim of this paper is to find the optimal values of the reaction rates coefficients for the combustion of a methane/air mixture for a given reduced reaction mechanism which has a high appropriateness with full reaction mechanism.

Design/methodology/approach

A multi‐objective genetic algorithm (GA) was used to determine new reaction rate parameters (A's, β's, and Ea's in the non‐Arrhenius expressions). The employed multi‐objective structure of the GA allows for the incorporation of perfectly stirred reactor (PSR), laminar premixed flames, opposed flow diffusion flames, and homogeneous charge compression ignition (HCCI) engine data in the inversion process, thus enabling a greater confidence in the predictive capabilities of the reaction mechanisms obtained.

Findings

The results of this study demonstrate that the GA inversion process promises the ability to assess combustion behaviour for methane, where the reaction rate coefficients are not known. Moreover it is shown that GA can consider a confident method to be applied, straightforwardly, to the combustion chambers, in which complex reactions are occurred.

Originality/value

In this paper, GA is used in more complicated combustion models with fewer assumptions. Another consequence of this study is less CPU time in converging to final solutions.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2005

İres İskender

To analyze the operating performance of a fuzzy logic control (FLC) based solar energy conversion modular system controlled by a digital signal processor (DSP) microcontroller.

2078

Abstract

Purpose

To analyze the operating performance of a fuzzy logic control (FLC) based solar energy conversion modular system controlled by a digital signal processor (DSP) microcontroller.

Design/methodology/approach

A range of published works relevant to the solar energy conversion modular systems are evaluated and their limitations are indicated in the first section of the paper. The circuit diagram of the panel‐boost converter system is described in the second section. In the third section, a neural network model is suggested for the photovoltaic panel and the model is created in the MATLAB/SIMULINK and then combined with other blocks existing in the system. The design of the FLC method is described in section 4. The simulation and experimental results corresponding to the control of the duty‐cycle of the converter to set the operating point of the solar panel at the maximum power point (MPP) are given in sections 5 and 6, respectively. Section 7, summarizes the results and conclusions of the study.

Findings

The paper suggests a simple dc‐dc boost converter controlled by FLC method. The proposed converter model can be used to obtain maximum power from a photovoltaic panel.

Research limitations/implications

In preparing this paper, the resources books existing in the library of our university and the resources relative to the solar energy conversion and FLC published in English language and reachable through the internet were researched.

Practical implications

The paper suggests a neural network model for a solar panel, which can be used in the simulation of the solar energy panel‐boost converter system. The solar energy panel‐boost converter system proposed in this study can be used by the researchers who are working in the solar energy conversion area.

Originality/value

The suggestion of a neural network model for a solar panel and creation of this model in the MATLAB/SIMULINK environment provides researchers to simulate and to analyze the performance of the solar energy panel‐boost converter system using the MATLAB/SIMULINK simulation program. In addition, since the control approach proposed in this paper does not require the information on temperature and solar irradiance that affect the maximum output power, can effectively find the MPP of the solar panel.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1958

A.D. Baxter and S.W. Greenwood

ROCKET and ramjet engines have not the universal application that gas turbines command and possibly on this account they have not had, until recent years, the development effort…

Abstract

ROCKET and ramjet engines have not the universal application that gas turbines command and possibly on this account they have not had, until recent years, the development effort which gave such amazing results in turbine powered aircraft. Nevertheless, they have demonstrated quite dramatically in various parts of the world that they are power plants to be reckoned with. In Great Britain, their value for aircraft was appreciated somewhat belatedly and events have since decreed that the promise they showed should be smothered before it could become a vital fact. On the other hand their importance for missiles was realized at the conclusion of the 1939–45 war, but again they were not encouraged on anything like the scale that present events show would have been justified. Because of this lack of encouragement, British rockets and ramjets, instead of leading the world, as do gas turbines, are struggling hard to provide a modest rate of progress.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 September 2014

C. Pornet, S. Kaiser and C. Gologan

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy…

Abstract

Purpose

The aim of the paper is to establish the COst-Specific Air Range (COSAR) as a new figure-of-merit based on the cost of energy to optimise the flight profile of a hybrid energy aircraft.

Design/methodology/approach

After reviewing the expression and the application of the specific air range (SAR) and of the energy-specific air range (ESAR), the need of a new figure-of-merit for flight technique optimisation of hybrid energy aircraft is motivated. Based on the specific cost of the energies consumed, the mathematical expression of COSAR is derived. To enable optimum economics operations, a cost index (CI) derivation is introduced for a variety of hybrid-electric concepts to consider the additional time-related cost. The application of COSAR and of the CI is demonstrated for cruise optimisation of a hybrid-electric retrofit aircraft concept.

Findings

As a consequence of the consumption of multiple energy sources in a hybrid aircraft, optimisation according to the objective functions SAR and ESAR leads to minimum in-flight CO2 emissions and minimum energy consumption for a given stage length. While the optimisation of a single energy source aircraft according to these figures-of-merit directly results in minimum energy cost for a given unit range, this statement is no longer true for hybrid-energy aircraft. Consequently, introducing a new figure-of-merit established on the specific cost of the energies consumed enables flight technique optimisation for minimum energy cost of hybrid-energy aircraft. Additionally, the related time-cost is taken into account by means of a CI definition for minimum operating cost.

Practical implications

COSAR may serve as an alternative to SAR used today as the standard figure-of-merit for fuel optimised flight profile. Using COSAR and the CI allow airlines to adapt the flight profiles of hybrid-energy aircraft fleets according to the energy market price and their related cost of time to determine optimum economical flight profile.

Originality/value

Using COSAR as a figure-of-merit, the flight profile of hybrid energy aircraft can be optimised for minimum energy cost. Time-related costs are considered for optimum operating economics by utilisation of the CI definition for hybrid energy aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 September 1954

D.C. Hancock and T. Tunnicliff

IN consequence of the rapid progress in aircraft development in the past decade it has been necessary for cable manufacturers to provide an ever‐widening variety of cables to meet…

Abstract

IN consequence of the rapid progress in aircraft development in the past decade it has been necessary for cable manufacturers to provide an ever‐widening variety of cables to meet the special needs of aircraft designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 October 2018

Timo Rogge, Ricarda Berger, Linus Pohle, Raimund Rolfes and Jörg Wallaschek

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine…

Abstract

Purpose

The purpose of this study a fast procedure for the structural analysis of gas turbine blades in aircraft engines. In this connection, investigations on the behavior of gas turbine blades concentrate on the analysis and evaluation of starting dynamics and fatigue strength. Besides, the influence of structural mistuning on the vibration characteristics of the single blade is analyzed and discussed.

Design/methodology/approach

A basic computation cycle is generated from a flight profile to describe the operating history of the gas turbine blade properly. Within an approximation approach for high-frequency vibrations, maximum vibration amplitudes are computed by superposition of stationary frequency responses by means of weighting functions. In addition, a two-way coupling approach determines the influence of structural mistuning on the vibration of a single blade. Fatigue strength of gas turbine blades is analyzed with a semi-analytical approach. The progressive damage analysis is based on MINER’s damage accumulation assuming a quasi-stable behavior of the structure.

Findings

The application to a gas turbine blade shows the computational capabilities of the approach presented. Structural characteristics are obtained by robust and stable computations using a detailed finite element model considering different load conditions. A high quality of results is realized while reducing the numerical costs significantly.

Research limitations/implications

The method used for analyzing the starting dynamics is based on the assumption of a quasi-static state. For structures with a sufficiently high stiffness, such as the gas turbine blades in the present work, this procedure is justified. The fatigue damage approach relies on the existence of a quasi-stable cyclic stress condition, which in general occurs for isotropic materials, as is the case for gas turbine blades.

Practical implications

Owing to the use of efficient analysis methods, a fast evaluation of the gas turbine blade within a stochastic analysis is feasible.

Originality/value

The fast numerical methods and the use of the full finite element model enable performing a structural analysis of any blade structure with a high quality of results.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 143000