Search results

1 – 10 of 32
Article
Publication date: 17 February 2015

Jian Jiang, Guo-Qiang Li and Asif Usmani

OpenSees is an open-source object-oriented software framework developed at UC Berekeley. The OpenSees framework has been recently extended to deal with structural behaviour under…

Abstract

OpenSees is an open-source object-oriented software framework developed at UC Berekeley. The OpenSees framework has been recently extended to deal with structural behaviour under fire conditions. This paper summaries the key work done for this extension and focuses on the validation and application of the developed OpenSees to study the behaviour of composite steel-concrete beams under fire conditions. The performance of the developed OpenSees are verified by four mechanical tests and two fire tests on simply supported composite beams. A parametric study is carried out using OpenSees to study the influence of boundary condition as well as composite effect of slab on the behavior of composite beams exposed to fire. The stress and strain along the beam section is output and compared with yield stress limit at elevated temperature to explain these influences in detail. The results show that the stress distribution in the web of the steel beam is more complex due to the support effects.

Details

Journal of Structural Fire Engineering, vol. 6 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 April 2022

Mhd Anwar Orabi, Jin Qiu, Liming Jiang and Asif Usmani

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to…

Abstract

Purpose

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to standard fire. Considerably less effort has been put into investigating the response to localised fires that result in planarly non-uniform temperature distribution in the exposed elements.

Design/methodology/approach

In this paper, the OpenSees for Fire framework for modelling slabs under non-uniform fire exposure is presented, verified against numerical predictions by Abaqus and then validated against experimental tests. The thermal wrapper developed within OpenSees for Fire is then utilised to apply localised fire exposure to the validated slab models using the parameters of an experimentally observed localised fire. The effect of the smoke layer is also considered in this model and shown to significantly contribute to the thermal and thus thermo-mechanical response of slabs. Finally, the effect of localised fire heat release rate (HRR) and boundary conditions are studied.

Findings

The analysis showed that boundary conditions are very important for the response of slabs subject to localised fire, and expansive strains may be accommodated as deflections without severely damaging the slab by considering the lateral restraint.

Originality/value

This work demonstrates the capabilities of OpenSees for Fire in modelling structural behaviours subjected to non-uniform fire conditions and investigates the damage pattens of flat slabs exposed to localised fires. It is an advancing step towards understanding structural responses to realistic fires.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 March 2012

Asif Usmani, Jian Zhang, Jian Jiang, Yaqiang Jiang and Ian May

In this paper we report the progress of our work so far on extending of the OpenSees framework so that it can be used to model structures subjected to fire. The work has focussed…

Abstract

In this paper we report the progress of our work so far on extending of the OpenSees framework so that it can be used to model structures subjected to fire. The work has focussed on understanding the C++ based object oriented structure of the OpenSees framework, so that all developments remain consistent with it. New classes have been added to introduce temperature dependent material properties for steel and concrete materials. New element classes have also been added to analyse 2D truss and frame structures subjected to fire. This paper will provide an overview of the developments already implemented and present results from using the implemented code to solve a number of benchmark problems and from modelling real fire tests.

Details

Journal of Structural Fire Engineering, vol. 3 no. 1
Type: Research Article
ISSN: 2040-2317

Article
Publication date: 12 September 2016

Negar Elhami Khorasani, Maria Garlock and Paolo Gardoni

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one…

Abstract

Purpose

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one seamless programming environment and is used to analyze an example nine-story steel moment-resisting frame (MRF) under an FFE. The framework includes uncertainties in load and material properties at elevated temperatures and evaluates the MRF performance based on various limit states.

Design/methodology/approach

Specifically, this work models the uncertainties in fire load density, yield strength and modulus of elasticity of steel. The location of fire compartment is also varied to investigate the effect of story level (lower vs higher) and bay location (interior vs exterior) of the fire on the post-earthquake performance of the frame. The frame is modeled in OpenSees to perform non-linear dynamic, thermal and reliability analyses of the structure.

Findings

Results show that interior bays are more susceptible than exterior bays to connection failure because of the development of larger tension forces during the cooling phase of the fire. Also, upper floors in general are more probable to reach specified damage states than lower floors because of the smaller beam sizes. Overall, results suggest that modern MRFs with a design that is governed by inter-story drifts have enough residual strength after an earthquake so that a subsequent fire typically does not lead to results significantly different compared to those of an event where the fire occurs without previous seismic damage. However, the seismic damage could lead to larger fire spread, increased danger to the building as a whole and larger associated economic losses.

Originality/value

Although the paper focuses on FFE, the proposed framework is general and can be extended to other multi-hazard scenarios.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 February 2023

Ahed Habib and Umut Yildirim

Over the past few decades, several base isolation systems have been developed to enhance the performance of structures under extreme earthquake shaking intensities. Recently, to…

Abstract

Purpose

Over the past few decades, several base isolation systems have been developed to enhance the performance of structures under extreme earthquake shaking intensities. Recently, to achieve high energy dissipation capabilities, a new generation of multi-stage friction pendulum (FP) bearings known as the “Quintuple Friction Pendulum (QFP)” was introduced in the literature. With the help of its five effective pendula and nine operational regimes, this bearing's major benefits stem from its ability to accomplish complicated multi-stage adaptive behavior with smoothed loading and unloading when subjected to lateral forces.

Design/methodology/approach

Within the assessment context, five finite element models of reinforced concrete frames supported on QFP isolators with different properties will be developed in OpenSees. Thereafter, a set of 60 earthquakes will be analyzed using the nonlinear time history analysis approach, and the impact of each ground motion record's properties will be evaluated.

Findings

Overall, the study's findings have demonstrated that the characteristics of the isolator, combined with the type of earthquake being applied, have a substantial impact on the isolator's behavior.

Originality/value

Currently, no studies have examined the energy distribution of structural systems equipped with this type of isolation system while considering the influence of earthquake characteristics. Thus, this study is intended to extend the findings available in the literature by discussing and illustrating the distribution of strong ground motions input energy into highly nonlinear base-isolated systems that account for the bearing and superstructural materials' nonlinearity, geometric nonlinearity and leakage-prevented viscous damping nonlinearity. Besides, it investigates the influence of various earthquake characteristics on the energy dissipation of such buildings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 October 2019

Mustesin Ali Khan, Liming Jiang, Katherine Ann Cashell and Asif Usmani

Perforated composite beams are an increasingly popular choice in the construction of buildings because they can provide a structurally and materially efficient design solution…

Abstract

Purpose

Perforated composite beams are an increasingly popular choice in the construction of buildings because they can provide a structurally and materially efficient design solution while also facilitating the passage of services. The purpose of this paper is to examine the behaviour of restrained perforated beams, which act compositely with a profiled slab and are exposed to fire. The effect of surrounding structure on the composite perforated beam is incorporated in this study using a virtual hybrid simulation framework. The developed framework could also be used to analyse other structural components in fire.

Design/methodology/approach

A finite element model is developed using OpenSees and OpenFresco using a virtual hybrid simulation technique, and the accuracy of the model is validated using available fire test data. The validated model is used to investigate some of the most salient parameters such as the degree of axial and rotational restraint, arrangement of the openings and different types of fire on the overall fire behaviour of composite perforated beams.

Findings

It is shown that both axial and rotational restraint have a considerable effect on time-displacement behaviour and the fire performance of the composite perforated beam. It is observed that the rate of heating and the consequent development of elevated temperature in the section have a significant effect on the fire behaviour of composite perforated beams.

Originality/value

The paper will improve the knowledge of readers about modelling the whole system behaviour in structural fire engineering and the presented approach could also be used for analysing different types of structural components in fire conditions.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 November 2019

Vijay Kumar Polimeru and Arghadeep Laskar

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting…

Abstract

Purpose

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting the complete non-linear response of shear critical bridge piers (with walls having aspect ratios greater than 2.5) under combined axial and reversed cyclic uniaxial bending loads. The effectiveness of the 2D CSMM-based NLFE model has been compared with the widely used one-dimensional (1D) fiber-based NLFE models.

Design/methodology/approach

Three reinforced concrete (RC) hollow rectangular bridge piers tested under reversed cyclic uniaxial bending and sustained axial loads at the National Centre for Research on Earthquake Engineering (NCREE) Taiwan have been simulated using both 1D and 2D models in the present study. The non-linear behavior of the bridge piers has been studied through various parameters such as hysteretic loops, energy dissipation, residual drift, yield load and corresponding drift, peak load and corresponding drift, ultimate loads, ductility, specimen stiffness and critical strains in concrete and steel. The results obtained from CSMM-based NLFE model have been critically compared with the test results and results obtained from the 1D fiber-based NLFE models.

Findings

It has been observed from the analysis results that both 1D and 2D simulation models performed well in predicting the response of flexure critical bridge pier. However, in the case of shear critical bridge piers, predictions from 2D CSMM-based NLFE simulation model are more accurate. It has, thus, been concluded that CSMM-based NLFE model is more accurate and robust to simulate the complete non-linear behavior of shear critical RC hollow rectangular bridge piers.

Originality/value

In this study, a novel attempt has been made to provide a rational and robust FE model for analyzing shear critical hollow RC bridge piers (with walls having aspect ratios greater than 2.5).

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 March 2016

Mehdi Kashani, Laura N Lowes, Adam J Crewe and Nicholas A Alexander

A new modelling technique is developed to model the nonlinear behaviour of corrosion damaged reinforced concrete (RC) bridge piers subject to cyclic loading. The model employs a…

Abstract

Purpose

A new modelling technique is developed to model the nonlinear behaviour of corrosion damaged reinforced concrete (RC) bridge piers subject to cyclic loading. The model employs a nonlinear beam-column element with multi-mechanical fibre sections using OpenSees. The nonlinear uniaxial material models used in the fibre sections account for the effect of corrosion damage on vertical reinforcing, cracked cover concrete due to corrosion of vertical bars and damaged confined concrete due to corrosion of horizontal tie reinforcement. An advance material model is used to simulate the nonlinear behaviour of the vertical reinforcing bars that accounts for combined impact of inelastic buckling and low-cycle fatigue degradation. The basic uncorroded model is verified by comparison of the computation and observed response of RC columns with uncorroded reinforcement. This model is used in an exploration study of recently tested reinforced concrete components to investigate the impact of different corrosion models on the inelastic response of corrosion damaged RC columns.

Design/methodology/approach

A series of pushover and cyclic analyses on a hypothetical corroded RC columns are conducted. The impact of corrosion on reinforcing steel and concrete is modelled. The influence of cyclic degradation due to low-cycle fatigue is also modelled.

Findings

(1) Corrosion has a more significant impact on ductility loss of RC columns than the strength loss (plastic moment capacity). (2) It was found that the flexural failure is initiated by buckling of vertical bars and crushing of core concrete which then followed by fracture of bars in tension. (3) The analyses results showed that for seismic performance and evaluation of existing corroded bridges monotonic pushover analysis is insufficient. The cyclic degradation due to low-cycle fatigue has a significant influence on the response of corroded RC columns.

Originality/value

The finite element developed in this paper is the most comprehensive model to date that is able to capture the onlinear behaviour of corroded RC columns under cyclic loading up to complete collapse.

Details

International Journal of Structural Integrity, vol. 7 no. 2
Type: Research Article
ISSN: 1757-9864

Article
Publication date: 30 May 2019

J. Esfandiari and Y. Khezeli

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames…

Abstract

Purpose

An analytical investigation is performed on zipper-braced frames. Zipper-braced frames are an innovative bracing system for steel structures. Conventional inverted-V-braced frames exhibit a design problem arising from the unbalanced vertical force generated by the lower story braces when one of them buckles. This adverse effect can be mitigated by adding zipper columns or vertical members connecting the intersection points of the braces above the first floor.

Design/methodology/approach

This paper critically evaluates over strength, ductility and response modification factors of these structures. To achieve the purpose of this research, several buildings of different stories are considered. Static pushover analysis, linear dynamic analysis and nonlinear incremental dynamic analysis are performed by OpenSees software concerning ten records of past earthquakes.

Findings

Also, ductility factor, over strength factor and response modification factor, has been calculated for zipper-braced frames system. The values of 3.5 and 5 are suggested for response modification factor in ultimate limit state and allowable stress methods, respectively.

Originality/value

The fragility curves were plotted for the first time for such kind of braces. It should be mentioned that these curves play significant roles in evaluating seismic damage of buildings.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 May 2023

Yan Liang, Yingying Wei, Panjie Li, Liangliang Li and Zhenghao Zhao

For coastal bridges, the ability to recover traffic functions after the earthquake has crucial implications for post-disaster reconstruction, which makes resilience become a…

Abstract

Purpose

For coastal bridges, the ability to recover traffic functions after the earthquake has crucial implications for post-disaster reconstruction, which makes resilience become a significant index to evaluate the seismic behavior. However, the deterioration of the material is particularly prominent in coastal bridge, which causes the degradation of the seismic behavior. As far, the research studies on resilience of coastal bridges considering multiple degradation factors and different disaster prevention capability are scarce. For further evaluating the seismic behavior of coastal bridge in the long-term context, the seismic resilience is conducted in this paper with considering multiple durability damage.

Design/methodology/approach

The fuzzy theory and time-varying fragility analysis are combined in this paper to obtain the life-cycle resilience of coastal bridges.

Findings

The results show that durability damage has a remarkable impact on the resilience. After 100 years of service, the seismic resilience of bridge with poor disaster-prevention capability has greatest reduction, about 18%. In addition, the improvement of the disaster prevention capability can stabilize the resilience of the bridge at a higher level.

Originality/value

In this paper, the time-varying fragility analysis of case bridge are evaluated with considering chloride ion erosion and concrete carbonization, firstly. Then, combining fuzzy theory and fragility analysis, the triangular fuzzy values of resilience parameters under different service period are obtained. Finally, the life-cycle resilience of bridge in different disaster prevention capability is analyzed.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 32