Search results

1 – 4 of 4
Open Access
Article
Publication date: 7 July 2022

Sirilak Ketchaya and Apisit Rattanatranurak

Sorting is a very important algorithm to solve problems in computer science. The most well-known divide and conquer sorting algorithm is quicksort. It starts with dividing the…

1254

Abstract

Purpose

Sorting is a very important algorithm to solve problems in computer science. The most well-known divide and conquer sorting algorithm is quicksort. It starts with dividing the data into subarrays and finally sorting them.

Design/methodology/approach

In this paper, the algorithm named Dual Parallel Partition Sorting (DPPSort) is analyzed and optimized. It consists of a partitioning algorithm named Dual Parallel Partition (DPPartition). The DPPartition is analyzed and optimized in this paper and sorted with standard sorting functions named qsort and STLSort which are quicksort, and introsort algorithms, respectively. This algorithm is run on any shared memory/multicore systems. OpenMP library which supports multiprocessing programming is developed to be compatible with C/C++ standard library function. The authors’ algorithm recursively divides an unsorted array into two halves equally in parallel with Lomuto's partitioning and merge without compare-and-swap instructions. Then, qsort/STLSort is executed in parallel while the subarray is smaller than the sorting cutoff.

Findings

In the authors’ experiments, the 4-core Intel i7-6770 with Ubuntu Linux system is implemented. DPPSort is faster than qsort and STLSort up to 6.82× and 5.88× on Uint64 random distributions, respectively.

Originality/value

The authors can improve the performance of the parallel sorting algorithm by reducing the compare-and-swap instructions in the algorithm. This concept can be used to develop related problems to increase speedup of algorithms.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Content available

Abstract

Details

Facilities, vol. 18 no. 7/8
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 January 2020

Donghai Liu, Youle Wang, Junjie Chen and Yalin Zhang

The purpose of this paper is to provide insights into the current practice, challenges and future development trends of intelligent compaction (IC) technology from a bibliometric…

3053

Abstract

Purpose

The purpose of this paper is to provide insights into the current practice, challenges and future development trends of intelligent compaction (IC) technology from a bibliometric perspective.

Design/methodology/approach

A bibliometric analysis on IC-relevant studies is presented. Through this quantitative manner, insights into the current IC research practice and development trends have been derived from the perspectives of publications and citations, spatial distribution, knowledge construction, structural variations, existing problems, and conclusions and recommendations.

Findings

Currently, IC applications are confronted with the issues of intelligent compaction measurement values (ICMVs) applicability, autonomous control, specifications and applications. To address the issues, three potential research directions are identified: a comprehensive ICMV measurement system that is designated for single layer analysis; autonomous control mechanisms with integrated management capabilities that can efficiently collaborate all stakeholders; and a standardized application workflow and the cost-benefit evaluation of IC in the context of the full life cycle.

Research limitations/implications

The literature used in this paper is collected from the Web of Science. Although the database covers almost all the important publications in IC field, studies not indexed by the database are not considered.

Originality/value

This research quantitatively analyzes the current IC practice and development trends from the perspectives of bibliometric analysis. It provides an overview of the knowledge construction and development of IC technology. The discussions about the problems and the suggested solutions can be useful for those interested in this field.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Access

Only content I have access to

Year

Content type

1 – 4 of 4