Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 10 August 2018

Denise Ann Brady, Patricia Tzortzopoulos, John Rooke, Carlos Torres Formoso and Algan Tezel

The purpose of this paper is to discuss a production planning and control model known as the Lean construction management (LCM) model, which applies a number of visual tools in a…

8142

Abstract

Purpose

The purpose of this paper is to discuss a production planning and control model known as the Lean construction management (LCM) model, which applies a number of visual tools in a systematic way to the planning and control process. The application of the visual tools in this way facilitates the flow of information, thus improving transparency between the interfaces of planning, execution and control.

Design/methodology/approach

Design Science research is adopted for this investigation, which analyses the original development of the model and reports on its testing and refinement over different types of projects. The research is divided into three parts, each part focussing on a different stage of development and construction project type.

Findings

The main findings are related to the benefits of visual management in the construction planning and control process, such as maintaining consistency between different planning levels, so that feasible execution plans are created; control becomes more focussed on prevention rather than correction, and creates opportunities for collaborative problem solving. Moreover, the physical display of the visual tools in a discrete planning area on-site encourages a regular exchange between participants on actual work progress as it unfolds, leading to more timely reaction to the problems at hand.

Originality/value

The problem of a lack of transparency in construction planning and control leads to communication issues on-site, poor process orientation and high levels of waste. LCM improves process transparency by making information related to system-wide processes more readily available to project participants. This enables them to foresee problems in a timely manner and to take necessary measures to resolve them or to adapt the process to current circumstances. The LCM model proposes a new way of applying visual tools and controls systematically to improve transparency in construction planning and control.

Details

Engineering, Construction and Architectural Management, vol. 25 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 June 2017

Abdulkadir A. Ganah and Godfaurd A. John

The section of the research presented in this paper aims to review and explore health and safety (H&S) issues on construction sites. It has the sole intention of using better…

1439

Abstract

Purpose

The section of the research presented in this paper aims to review and explore health and safety (H&S) issues on construction sites. It has the sole intention of using better computer visualisation to meet the needs of site practitioners in understanding such H&S problems.

Design/methodology/approach

The methodology follows a traditional literature review approach to understand the development of building information modelling (BIM) technology up to its current status. A questionnaire survey was conducted to gather information on the embedding of H&S planning by site practitioners within the BIM environment.

Findings

BIM has the potential to be used in H&S planning procedures, particularly in those related to tasks on construction sites. A framework for an integrated visual tool is developed for better H&S practice on site. It may be used actively by all practitioners, starting with site induction and addresses, inter alia, personal hazard perception.

Research limitations/implications

This paper provides a foundation for developing a tool that helps construction personnel explore potential H&S risks on site before construction begins. By introducing a framework for integrating BIM and project planning, a prototype can be developed to demonstrate the application of the proposed framework.

Originality/value

The research presented in this paper introduces BIM usage during the construction stage as a tool that supports a H&S toolbox. The paper proposes the useful framework for better H&S practice on site that can be used actively by all practitioners. The intention is to find a way forward in addressing “real” H&S site issues that may not be easily understood by practitioners without the full aid of visualisation scenarios.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 03
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 October 2018

Xuyue Yin, Xiumin Fan, Wenmin Zhu and Rui Liu

Aiming at presenting an interaction-free assembly assistance tool, the purpose of this paper is to propose a synchronous augmented reality (AR) assembly assistance and monitoring…

Abstract

Purpose

Aiming at presenting an interaction-free assembly assistance tool, the purpose of this paper is to propose a synchronous augmented reality (AR) assembly assistance and monitoring system. The system monitors operator’s hands activity and process completeness to recognize the assembly state, then display the AR contents contextually.

Design/methodology/approach

An assembly behavior recognition method is proposed based on gesture recognition. An assembly completeness inspection method is proposed based on SURF feature matching. Assembly state and AR display state are solved by a novel sequential hybrid AR display control strategy. A synchronous multi-channel AR view output strategy is proposed based on QR matrix decomposition.

Findings

A prototype system has been developed, and case study is performed on an industrial product. Experiments are performed to verify the feasibility, efficiency and recognition accuracy of the proposed methods.

Research limitations/implications

The proposed system assists users to perform assembly tasks with automatic visual guidance and vision monitoring, avoiding distractions caused by redundant human–computer interactions.

Practical implications

All methods are integrated to work on only one head-worn device, making the proposed system portable and cheaper. The vision processing pipelines and the view output channels are reconfigurable for customization.

Originality/value

This paper proposes an interaction-free AR assembly assistance and monitoring system. Assembly behavior recognition and assembly completeness inspection methods are integrated to monitor the assembly state. A sequential hybrid AR display control strategy is proposed to contextually update the AR contents. A synchronous multi-channel AR view output strategy is proposed to fulfill different visualization needs.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 March 2023

Kaiyang Wang, Fangyu Guo, Ruijia Zhou and Liang Qian

In recent years, augmented reality (AR) has shown its potential to assist various construction activities. Its use commonly requires additional refinement to be integrated into…

Abstract

Purpose

In recent years, augmented reality (AR) has shown its potential to assist various construction activities. Its use commonly requires additional refinement to be integrated into the building information modeling (BIM) process. Nevertheless, few studies have investigated AR implementation in BIM-enabled projects because of numerous challenges related to its implementation. This study aims to investigate the implementation of AR in construction and identify the critical mechanisms for implementing BIM-AR successfully.

Design/methodology/approach

A mixed methodology was adopted for this study. First, this work presents a bibliometric analysis covering articles obtained from Scopus database published between 2000 and 2022. A sample size of 65 research papers pertinent to AR in construction was analyzed using VOSviewer software. Second, a participatory case study was conducted for a BIM-enabled project in China to gain insight into how BIM-AR implementation in construction is achieved.

Findings

The findings from the bibliometric analysis show an increasing interest in AR research within construction. The results indicate that AR research focuses on four clusters: real-time communication, project management, construction activities and education. Findings from the case study provide an empirical experience of AR application scenarios in a BIM-enabled project. Concomitantly, 15 critical success factors that influence BIM-AR implementation were finally identified and demonstrated.

Originality/value

This study provides a rich insight into the understanding and awareness of implementing AR. First, the findings are beneficial to construction practitioners and researchers because they provide a concentrated perspective of AR for emerging activities in the construction industry. Second, the results obtained from the case study could provide a useful guide for effectively implementing AR in a BIM-enabled construction project. Overall, this study may stimulate further research on AR-related studies in construction, such as BIM integration, factor analysis and construction education.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 14 March 2023

Mohammad Javad Zoleykani, Hamidreza Abbasianjahromi, Saeed Banihashemi, Seyed Amir Tabadkani and Aso Hajirasouli

Extended reality (XR) is an emerging technology, with its popularity rising in different industry sectors, where its application has been recently considered in construction…

Abstract

Purpose

Extended reality (XR) is an emerging technology, with its popularity rising in different industry sectors, where its application has been recently considered in construction safety. This study aims to investigate the applications of XR technologies in the safety of construction through projects lifecycle perspective.

Design/methodology/approach

Scientometric analysis was conducted to discover trends, keywords, contribution of countries and publication outlets in the literature. The content analysis was applied to categorize previous studies into three groups concerning the phase of lifecycle in which they used XR.

Findings

Results of the content analysis showed that the application of XR in the construction safety is mostly covered in two areas, namely, safety training and risk management. It was found that virtual reality was the most used XR tool with most of its application dedicated to safety training in the design phase. The amount of research on the application of augmented reality and mixed reality in safety training, and risk management in all phases of lifecycle is still insignificant. Finally, this study proposed three main areas for using the XR technologies regarding the safety issues in future research, namely, control of safety regulations and safety coordination in construction phase, and safety reports in the operation phase.

Originality/value

This paper inspected the utilization of all types of XR for safety in each phase of construction lifecycle and proposed future directions for research by addressing the safety challenges in each phase.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 August 2019

Peng Sun, Naiguang Lu, Mingli Dong, Xiaoping Lou and Zexiang Tan

Geometric structure error of parabolic trough concentrator (PTC) frame affects the installation accuracy of mirrors and absorber tubes and thus decreases the solar energy…

Abstract

Purpose

Geometric structure error of parabolic trough concentrator (PTC) frame affects the installation accuracy of mirrors and absorber tubes and thus decreases the solar energy concentrating efficiency. Until now, there is no effective method to instruct the assembly and regulation of PTC frames. This paper aims to propose a vision guided method for fast and accurate regulation of mirror and absorber supports to improve the geometric quality of PTC frames.

Design/methodology/approach

The PTC frame support regulating system consists of a general-purpose online photogrammetry system, frame support measurement adaptors and data analyzing software. First, the positions and angles of all the supports are measured in real time by the online photogrammetric system. Then, the measured positions and angles are aligned to the design reference frame through the transformation calculated by an absorber position constrained nonlinear optimization so as to get the geometric errors and regulating amounts. Finally, a graduated pseudo-color-based visualization method is proposed to assist the manual or automated regulation of PTC frame supports in site.

Findings

The proposed method does not need to construct a reference system nor specify the rotation attitude of the PTC frame, and it is capable of conducting efficient and accurate regulation on PTC frame assembly line. The method is applied to manual regulation of a light type PTC frame structure. After regulation, the maximum position and angle errors of supports are reduced to less than 0.15 mm and 0.15° respectively and the intercept factor is increased to 97%, which meets the requirement for a qualified PTC concentrator.

Originality/value

To the authors’ knowledge, this paper is the first to propose a vision guided assembly or regulation method for PTC frame structures. The research uses online photogrammetry system to provide real-time geometric quality information feedback, elaborates the data analysis algorithm and provides the visualization method for accurate and efficient in site regulation. Furthermore, this paper also provides theories, methods and experiences for other applications that use vision guidance for attitude regulation and digital flexible assembly of large equipment.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 May 2022

Aso Hajirasouli, Saeed Banihashemi, Rob Drogemuller, Abdulwahed Fazeli and Saeed Reza Mohandes

This study aims to present a comprehensive review, critical analysis and implications of the augmented reality (AR) application and implementation in the construction industry…

1548

Abstract

Purpose

This study aims to present a comprehensive review, critical analysis and implications of the augmented reality (AR) application and implementation in the construction industry arena and demonstrate the gaps along with the future research agenda.

Design/methodology/approach

The construction industry has been under pressure to improve its productivity, quality and sustainability. However, the conventional methods and technologies cannot respond to this industry's ever-growing demands while emerging and innovative technologies such as building information modelling, artificial intelligence (AI), virtual reality (VR) and AR have emerged and can be used to address this gap. AR application has been acknowledged as one of the most impactful technologies in the construction digitalization process. However, a comprehensive understanding of the AR application, its areas of effectiveness and overarching implications in a construction project life cycle remain vague. Therefore, this study uses an integration of systematic literature review and thematic analysis techniques to identify the phases of a construction project life cycle in which AR is the most effective, the current issues and problems of the conventional methods, the augmented parameters, the immediate effects of using AR on each phase and, eventually, the overall influence of AR on the entire project. Nvivo qualitative data analysis software was used to code, categorize and create themes from the collected data. The result of data analysis was used to develop four principal frameworks of the AR applications – design and constructability review session; construction operation; construction assembly; and maintenance and defect inspection and management – and the gap analysis along with the future research agenda.

Findings

The findings of this study indicated that the application of AR can be most effective in the following four stages of a project life cycle: design and constructability review session; construction operation; construction assembly; and site management and maintenance, including site management and defect inspection. The results also showed that the application of AR technology in the construction industry can align and address building industry objectives by various elements such as: reducing project costs through the application of digital technologies, saving time, meeting deadlines and reduction in project delays through integrated, live scheduling and increased safety and quality of the construction work and workers.

Research limitations/implications

One of the main limitations of this study was the lack of materials and resources on the downfalls and shortcomings of using immersive technologies, AR, in the construction project life cycle. In addition, most of the reviewed papers were focused on the experiments with simulations and in the lab environment, rather than real experiments in real construction sites and projects. This may cause limitations and inaccuracy of the collected and reported data.

Practical implications

The results of this study indicated that the application of AR technology in construction industry can align and address building industry objectives by various elements such as: reducing project costs through the application of digital technologies; saving time; meeting deadlines and reduction in project delays through integrated, live scheduling; and increased safety and quality of the construction work and workers.

Social implications

Application of AR in the various stages of a project life cycle can increase the safety and quality of the construction work and workers.

Originality/value

The reviewed literature indicated that substantial research and studies are yet to be done, to demonstrate the full capacity and impact of these emerging technologies in the field. The collected data and literature indicate that amongst the digital technologies, AR is one of the least researched topics in the field. Therefore, this study aims to examine the application of AR in construction projects’ life cycle to identify the stages and practices of a project life cycle where AR and its capabilities can be exploited and to identify the respective problems and issues of the conventional methods and the ways in which AR can address those shortcomings. Furthermore, this study focuses on identifying the overall outcome of AR applications in a construction project in terms of cost and time efficiency, process precision and safety.

Open Access
Article
Publication date: 1 September 2022

Oluseyi Julius Adebowale and Justus Ngala Agumba

Despite the significance of the construction industry to the nation's economic growth, there is empirical evidence that the sector is lagging behind other industries in terms of…

3798

Abstract

Purpose

Despite the significance of the construction industry to the nation's economic growth, there is empirical evidence that the sector is lagging behind other industries in terms of productivity growth. The need for improvements inspired the industry's stakeholders to consider using emerging technologies that support the enhancement. This research aims to report augmented reality applications essential for contractors' productivity improvement.

Design/methodology/approach

This study systematically reviewed academic journals. The selection of journal articles entailed searching Scopus and Web of Science databases. Relevant articles for reviews were identified and screened. Content analysis was used to classify key applications into six categories. The research results were limited to journal articles published between 2010 and 2021.

Findings

Augmented reality can improve construction productivity through its applications in assembly, training and education, monitoring and controlling, interdisciplinary function, health and safety and design information.

Originality/value

The research provides a direction for contractors on key augmented reality applications they can leverage to improve their organisations' productivity.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 November 2022

Jing Yin, Jiahao Li, Ahui Yang and Shunyao Cai

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but…

Abstract

Purpose

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes.

Design/methodology/approach

The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm.

Findings

The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets.

Originality/value

This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 August 2022

Zhao Xu, Yangze Liang, Hongyu Lu, Wenshuo Kong and Gang Wu

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction…

Abstract

Purpose

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction project process is one of the key factors for the success of a project. How to effectively monitor the construction process of prefabricated building construction projects is an urgent problem to be solved. Aiming at the problems existing in the monitoring of the construction process of prefabricated buildings, this paper proposes a monitoring method based on the feature extraction of point cloud model.

Design/methodology/approach

This paper uses Trimble X7 3D laser scanner to complete field data collection experiments. The point cloud data are preprocessed, and the prefabricated component segmentation and geometric feature measurement are completed based on the PCL platform. Aiming at the problem of noisy points and large amount of data in the original point cloud data, the preprocessing is completed through the steps of constructing topological relations, thinning, and denoising. According to the spatial position relationship and geometric characteristics of prefabricated frame structure, the segmentation algorithm flow is designed in this paper. By processing the point cloud data of single column and beam members, the quality of precast column and beam members is measured. The as-built model and as-designed model are compared to realize the visual monitoring of construction progress.

Findings

The experimental results show that the dimensional measurement accuracy of beam and column proposed in this paper is more than 95%. This method can effectively detect the quality of prefabricated components. In the aspect of progress monitoring, the visualization of real-time progress monitoring is realized.

Originality/value

This paper proposed a new monitoring method based on feature extraction of the point cloud model, combined with three-dimensional laser scanning technology. This method allows for accurate monitoring of the construction process, rapid detection of construction information, and timely detection of construction quality errors and progress delays. The treatment process based on point cloud data has strong applicability, and the real-time point cloud data transfer treatment can guarantee the timeliness of monitoring.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000