Search results

1 – 1 of 1
Open Access
Article
Publication date: 17 October 2022

Qianqian Li, Bo Zhang, Tao Yang, Qingwen Dai, Wei Huang and Xiaolei Wang

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface…

Abstract

Purpose

The purpose of this paper is to artificially construct a functional surface with self-propulsion flow characteristics for the directional transportation of propellant in surface tension tanks.

Design/methodology/approach

In this study, a method to enhance the propulsion efficiency by using functional surfaces of self-propulsion performance was proposed. Superhydrophilic wedged-groove with the superhydrophobic background was fabricated and the self-propulsion capacity was verified.

Findings

It is found that the self-propulsion capacity is related to the divergence angle of the wedged-groove in the hydrophilic area, and the velocity of the droplets on the deflector plate is the largest with the divergence angle of 4°; the temperature gradient field formed by the condensing device at the nozzle can accelerate the droplet outflow from the tank.

Originality/value

Realization of this idea provides an accurate control strategy for the complex flow process of propellant in plate surface tension tanks, which could enhance the efficiency of the tension tank significantly.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1