Search results

1 – 10 of 366
Article
Publication date: 18 October 2011

Jungguk Kim, Agus Budiyono, Dong‐Min Kim, Ho‐Geun Song and Doo‐Hyun Kim

The purpose of this paper is to introduce a new danger‐aware Operational Flight Program (OFP) for the unmanned helicopter's auto‐navigation based on the well‐known time‐triggered…

Abstract

Purpose

The purpose of this paper is to introduce a new danger‐aware Operational Flight Program (OFP) for the unmanned helicopter's auto‐navigation based on the well‐known time‐triggered message‐triggered object (TMO) model.

Design/methodology/approach

In this design with the TMO, the danger‐awareness means two things. First, an unmanned helicopter maneuvers on safe altitudes to avoid buildings or mountains when navigating to the target position. It is assumed that minimum safe altitudes are given on evenly spaced grids and on the center points of every four adjacent grids. A three‐dimensional (3D) path‐finding algorithm using this safe‐altitude information is proposed. Second, a helicopter automatically avoids a zone with very high temperature caused by a fire.

Findings

Since the auto‐flight control system requires componentized real‐time processing of sensors and controllers, the TMO model that has periodic and sporadic threads as members, has been used in designing the OFP. It has been found that using the TMO scheme is a way to construct a very flexible, well‐componentized and timeliness‐guaranteed OFP.

Practical implications

As the RTOS, RT‐eCos has been used. It was developed a few years ago based on the eCos3.0 to support the real‐time thread model of the TMO scheme. To verify this navigation system, a hardware‐in‐the‐loop simulation (HILS) system also has been developed.

Originality/value

Designing an OFP by using the real‐time object model TMO and the proposed 3D safe path finding algorithm is a whole new effective deadline‐based approach. And the developed OFP can be used intensively in the phase of disaster response and recovery.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 6 July 2018

Petar D. Mirosavljević, Đorđe I. Pantović and Radomir M. Mijailović

The purpose of this paper is to develop a new tool for aircraft performance analysis and optimization.

205

Abstract

Purpose

The purpose of this paper is to develop a new tool for aircraft performance analysis and optimization.

Design/methodology/approach

In this paper, the methodology of converting nomogram curves into mathematical functions is presented. Aircraft performance nomograms represent graphical interpretation of influence of several variables on performance such as environmental conditions, runway conditions and aircraft mass. The aircraft performance nomograms are converted in mathematical functions that describe several independent variables’ influence on aircraft performance parameters. To achieve greater accuracy in calculation of aircraft performance parameters, it is necessary to determine mathematical functions presented by dependent variable variations with several independent variables. The method of determining mathematical functions is illustrated on Fokker 100 landing gear extended net climb gradient determination graph.

Findings

To evaluate model, it was necessary to determine net climb gradient both graphically and analytically using model and compare the results. After solving both analytically and graphically, it was concluded that results are a match. During model evaluation, it was observed that model has a lot of advantages such as it has great precision of calculation, requires less time to calculate results and has minimum error possibility.

Practical implications

Final result of digitalization of aircraft performance nomograms is software production. The usage of this software can reduce flight planning and aircraft exploitation costs in several different manners. Airliners can produce such a software for those types of aircraft where there is no software provided from aircraft manufacturer.

Originality/value

Digitalization of aircraft performance nomogram has never been analyzed before, although there is a possibility of this particular methodology implementation in a practical manner in aviation industry.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2006

Andrzej Tomczyk

This paper aims to present a proposal of a simple analytical redundancy method using for virtual attitude reference system design. The main idea of the project is applied typical…

Abstract

Purpose

This paper aims to present a proposal of a simple analytical redundancy method using for virtual attitude reference system design. The main idea of the project is applied typical on‐board general aviation aircraft equipment for solving pitch and bank angles.

Design/methodology/approach

The presented solution is based on satellite navigation and air data computer signals, which are independent from basic attitude and heading reference system. The concept described is related to the kinematics relations and aerodynamic forces formulas.

Findings

The paper shows that the virtual attitude sensors are used by failure detection and reconfiguration subsystem and as a standby attitude reference system for general aviation aircraft equipped with augmentation control system applied for improving safety and efficiency handling qualities of aircraft.

Originality/value

This solution allows improvements in operating properties of already existing and newly designed executive aircraft, as well as establishing a higher level of flight safety.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 April 2021

Agnieszka Kwiek, Cezary Galinski, Krzysztof Bogdański, Jaroslaw Hajduk and Andrzej Tarnowski

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design…

Abstract

Purpose

According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design a mission and a vehicle that could offer flights with relatively low G-loads. The project of the rocket-plane in a strake-wing configuration was undertaken to check if such a design could meet the FAA recommendation for this kind of flight. The project concept assumes that the rocket plane is released from a slowly flying carrier plane, then climbs above 100 kilometers above sea level and returns in a glide flight using a vortex lift generated by the strake-wing configuration. Such a mission has to include a flight transition during the release and return phases which might not be comfortable for passengers. Verification if FAA recommendation is fulfilled during these transition maneuvers was the purpose of this study.

Design/methodology/approach

The project was focused on the numerical investigation of a possibility to perform transition maneuvers mentioned above in a passenger-friendly way. The numerical simulations of a full-scale rocket-plane were performed using the simulation and dynamic stability analyzer (SDSA) software package. The influence of an elevator deflection change on flight parameters was investigated in two cases: a transition from the steep descent at high angles of attack to the level glide just after rocket-plane release from the carrier and an analogous transition after re-entry to the atmosphere. In particular, G-loads and G-rates were analyzed.

Findings

As a result, it was found that the values of these parameters satisfied the specific requirements during the separation and transition from a steep descent to gliding. They would be acceptable for an average passenger.

Research limitations/implications

To verify the modeling approach, a flight test campaign was performed. During the experiment, a rocket-plane scaled model was released from the RC model helicopter. The rocket-plane model was geometrically similar only. Froude scales were not applied because they would cause excessive technical complications. Therefore, a separate simulation of the experiment with the application of the scaled model was performed in the SDSA software package. Results of this simulation appeared to be comparable to flight test results so it can be concluded that results for the full-scale rocket-plane simulation are also realistic.

Practical implications

It was proven that the rocket-plane in a strake-wing configuration could meet the FAA recommendation concerning G-loads and G rates during suborbital flight. Moreover, it was proven that the SDSA software package could be applied successfully to simulate flight characteristics of airplanes flying at angles of attack not only lower than stall angles but also greater than stall angles.

Social implications

The application of rocket-planes in a strake-wing configuration could make suborbital tourist flights more popular, thus facilitating the development of manned space flights and contributing to their cost reduction. That is why it was so important to prove that they could meet the FAA recommendation for this kind of service.

Originality/value

The original design of the rocket plane was analyzed. It is equipped with an optimized strake wing and is controlled with oblique, all moving, wingtip plates. Its post-stall flight characteristics were simulated with the application of the SDSA software package which was previously validated only for angles of attack smaller than stall angle. Therefore, experimental validation was necessary. However, because of excessive technical problems caused by the application of Froude scales it was not possible to perform a conventional test with a dynamically scaled model. Therefore, the geometrically scaled model was built and flight tested. Then a separate simulation of the experiment with the application of this model was performed. Results of this separate simulation were compared with the results of the flight test. This comparison allowed to draw the conclusion on the applicability of the SDSA software for post-stall analyzes and, indirectly, on the applicability of the proposed rocket-plane for tourist suborbital flights. This approach to the experimental verification of numerical simulations is quite unique. Finally, a quite original method of the model launching during flight test experiment was applied.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 December 2022

Kejia Chen, Jintao Chen, Lixi Yang and Xiaoqian Yang

Flights are often delayed owing to emergencies. This paper proposes a cooperative slot secondary assignment (CSSA) model based on a collaborative decision-making (CDM) mechanism…

Abstract

Purpose

Flights are often delayed owing to emergencies. This paper proposes a cooperative slot secondary assignment (CSSA) model based on a collaborative decision-making (CDM) mechanism, and the operation mode of flight waves designs an improved intelligent algorithm to solve the optimal flight plan and minimize the total delay of passenger time.

Design/methodology/approach

Taking passenger delays, transfer delays and flight cancellation delays into account comprehensively, the total delay time is minimized as the objective function. The model is verified by a linear solver and compared with the first come first service (FCFS) method to prove the effectiveness of the method. An improved adaptive partheno-genetic algorithm (IAPGA) using hierarchical serial number coding was designed, combining elite and roulette strategies to find pareto solutions.

Findings

Comparing and analyzing the experimental results of various scale examples, the optimization model in this paper is greatly optimized compared to the FCFS method in terms of total delay time, and the IAPGA algorithm is better than the algorithm before in terms of solution performance and solution set quality.

Originality/value

Based on the actual situation, this paper considers the operation mode of flight waves. In addition, the flight plan solved by the model can be guaranteed in terms of feasibility and effectiveness, which can provide airlines with reasonable decision-making opinions when reassigning slot resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 April 2022

David Kofi Oppong, Evans Obu, Timothy Asare and God'sable Sitsofe Koku Aidam

This study aims to present details of the development and validation of the multicopter modelling code (MMC), a tool for the analysis of small-scale multicopters based on flight

Abstract

Purpose

This study aims to present details of the development and validation of the multicopter modelling code (MMC), a tool for the analysis of small-scale multicopters based on flight physics.

Design/methodology/approach

The development effort involved the study of aircraft dynamics and translating the equations of motion into MATLAB code. The authors also developed several auxiliary functions, so that the tool could trim the aircraft about a steady state, linearize the dynamic equations to produce a model that could be used for control systems design and carry out flight simulation.

Findings

MMC proved to be of good accuracy, producing results similar to those of other software such as AcuSolve, Overflow and the Rensselaer Multicopter Analysis Code (RMAC), which served as the motivation for this study.

Originality/value

The tool presented here provides an alternative to the aforementioned software, which are not freely available, programmed in MATLAB, a language well known to engineers and scientists.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Oliver Hirling and Florian Holzapfel

The purpose of this paper is to discuss European Aviation Safety Agency’s (EASA’s) Prototype Regulation on Unmanned Aircraft Operation and introduce the tool Operational Risk…

Abstract

Purpose

The purpose of this paper is to discuss European Aviation Safety Agency’s (EASA’s) Prototype Regulation on Unmanned Aircraft Operation and introduce the tool Operational Risk Considerations for Unmanned Aircraft Systems (O.R.C.U.S.). In contrast to existing airworthiness regulations for civil manned aircraft, EASA’s approach is focussed on flight operations and not aircraft, a significant change for the domain of civil airworthiness.

Design/methodology/approach

O.R.C.U.S. is a software risk analysis tool developed by the corresponding author. It encompasses all relevant factors for flight operations of light Unmanned Aircraft Systems (UAS) above populated areas in Germany. The tool generates predictions of possible fatalities in the event of a light Unmanned Aircraft crash through the use of validated statistics and considering the time and location of a mission. An example mission, including a discussion of the results, is provided to demonstrate and discuss the capabilities of O.R.C.U.S.

Findings

EASA’s Prototype Regulation on Unmanned Aircraft Operation makes a sound risk assessment of UAS flight operations indispensable. O.R.C.U.S. is able to increase risk awareness for operators and airworthiness authorities even if only less to none information about the UAS is available, supporting the possible approval of such an operation.

Originality/value

In this paper, O.R.C.U.S. is presented for the first time. O.R.C.U.S. can provide risk estimations for UAS operations in Germany, even if only minimum information about the UAS is available. In contrast to other tools, O.R.C.U.S. offers a unique risk prediction by combining aspects of the flying Unmanned Aircraft as well as the overflown area.

Details

International Journal of Intelligent Unmanned Systems, vol. 5 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 January 2024

Albert Zajdel, Michal Welcer and Cezary Jerzy Szczepanski

This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik…

Abstract

Purpose

This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik turboprop military trainer aircraft. Flight test of the system allowed to compare software and hardware simulation results with real flight recordings.

Design/methodology/approach

Proposed flight stabilisation system was developed using modern techniques of model-based design, automatic code generation, software and hardware in the loop testing. The project reached flight testing stage which allowed to gather data to verify models and simulation results and asses their quality.

Findings

Results of the comparison showed that the trim tab actuator model used in simulation can be improved by adding play. This reduced the difference between simulation and real flight system output – actuator angle. The influence of airloads on the flying actuator angle compared to hardware in the loop simulation in lab is less than ± 0.6°.

Originality/value

Proposed flight stabilisation system that uses trim tabs has several benefits over classic automatic flight system in terms of weight, energy consumption and structure simplicity and does not need aircraft primary control modification. It was developed using modern techniques of model-based design, automatic code generation and hardware in the loop simulations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 April 2020

Piotr Grzybowski and Ewelina Szpakowska-Peas

This paper aims to describe the idea and partial result of research on flight reconfiguration system (FRS) which is to be used in case of pilot incapacitation while performing the…

Abstract

Purpose

This paper aims to describe the idea and partial result of research on flight reconfiguration system (FRS) which is to be used in case of pilot incapacitation while performing the single-pilot operations for defining and guiding an aircraft to a safe destination.

Design/methodology/approach

Multiple problems with the development of emergency systems which could deal with crisis on-board occurs, e.g. definition of emergency destination which is dealing with the thread, ensuring that route to an emergency destination is safe, avoiding of air traffic and making sure that aircraft performance limitations would not be exceeded. FRS is a sophisticated hardware design, gathering data from aircraft on-board systems, commanding autopilot where to go and informing air traffic on crisis on-board. Developed algorithm analyzes data from onboard systems, internal database to calculate potential safe places and best routes to them. Multi-criteria decision-making is used to choose the best of them and execute it when needed.

Findings

Algorithms and hardware were tested in a simulated environment. An exemplary research experiment oriented on finding emergency destination and flying to it in the Software-In-The-Loop environment was presented.

Research limitations/implications

Currently, the use of the system is limited to use on-board of well-equipped CS-23 class aircraft and is limited to use in good weather conditions.

Practical implications

The use of FRS will in case of emergency constitute a new category of emergency maneuver, used for dealing with no-human pilot available on-board situations – autonomous emergency destination finding and route execution.

Originality/value

This study helps in the introduction of multi-stage decision-making to autonomously reconfigure route.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 1998

Line Dubé

Packaged software companies evolve in an environment characterized by ever‐shorter product life cycles and ever‐increasing competition. Reaching the marketplace first is often the…

1803

Abstract

Packaged software companies evolve in an environment characterized by ever‐shorter product life cycles and ever‐increasing competition. Reaching the marketplace first is often the way to gain a competitive advantage. This situation leads many packaged software organizations to change both their (often sequential) software development processes and rely on (often cross‐functional) teams. Reports on the software development practices of Software Corp., an organization developing software products for the travel industry, which experimented with several different approaches and finally implemented cross‐functional development teams. Data presented show that changes in the software development process deeply affect many aspects of the organization. The conclusions emphasize the importance of considering the work culture and organizational history when implementing a new software development method and highlight the importance of clearly defining the roles and responsibilities of all groups involved and the necessity to modify the company’s performance‐appraisal system to promote and support the new organizational objectives embodied in the changes in software development methods.

Details

Information Technology & People, vol. 11 no. 1
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of 366