Search results
1 – 2 of 2Omar Alqaryouti, Nur Siyam, Azza Abdel Monem and Khaled Shaalan
Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help…
Abstract
Digital resources such as smart applications reviews and online feedback information are important sources to seek customers’ feedback and input. This paper aims to help government entities gain insights on the needs and expectations of their customers. Towards this end, we propose an aspect-based sentiment analysis hybrid approach that integrates domain lexicons and rules to analyse the entities smart apps reviews. The proposed model aims to extract the important aspects from the reviews and classify the corresponding sentiments. This approach adopts language processing techniques, rules, and lexicons to address several sentiment analysis challenges, and produce summarized results. According to the reported results, the aspect extraction accuracy improves significantly when the implicit aspects are considered. Also, the integrated classification model outperforms the lexicon-based baseline and the other rules combinations by 5% in terms of Accuracy on average. Also, when using the same dataset, the proposed approach outperforms machine learning approaches that uses support vector machine (SVM). However, using these lexicons and rules as input features to the SVM model has achieved higher accuracy than other SVM models.
Details
Keywords
This paper examines the factors which impact the behavioral intentions toward cryptocurrency based on signaling theory.
Abstract
Purpose
This paper examines the factors which impact the behavioral intentions toward cryptocurrency based on signaling theory.
Design/methodology/approach
Data were collected through online questionnaire, and responses from 223 individuals in Lebanon were analyzed through SEM technique using Amos 24.
Findings
The outcomes portrayed the positive effect of perceived benefits and trust in cryptocurrency on behavioral intentions toward cryptocurrency; while not supporting the hypothesized influence of herd behavior and regulatory support.
Originality/value
This paper is among the first studies to adopt Signaling Theory (ST) in the cryptocurrency behavioral intentions research. Moreover, it is of the initial efforts in Lebanon and Middle East in evaluating behavioral intentions to use cryptocurrency, and it provide insights for future researchers, crypto project owners, crypto investors and crypto trading platforms.
Details