Search results

1 – 10 of 503
To view the access options for this content please click here
Article
Publication date: 23 November 2010

Dimitri V. Zarzhitsky, Diana F. Spears and David R. Thayer

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with…

Abstract

Purpose

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with short‐range, low‐power sensing, communication, and processing capabilities trace a chemical plume to its source emitter

Design/methodology/approach

The source localization problem is analyzed using computational fluid dynamics simulations of airborne chemical plumes. The analysis is divided into two parts consisting of two large experiments each: the first part focuses on the issues of collaborative control, and the second part demonstrates how task performance is affected by the number of collaborating robots. Each experiment tests a key aspect of the problem, e.g. effects of obstacles, and defines performance metrics that help capture important characteristics of each solution.

Findings

The new empirical simulations confirmed previous theoretical predictions: a physics‐based approach is more effective than the biologically inspired methods in meeting the objectives of the plume‐tracing mission. This gain in performance is consistent across a variety of plume and environmental conditions. This work shows that high success rate can be achieved by robots using strictly local information and a fully decentralized, fault‐tolerant, and reactive control algorithm.

Originality/value

This is the first paper to compare a physics‐based approach against the leading alternatives for chemical plume tracing under a wide variety of fluid conditions and performance metrics. This is also the first presentation of the algorithms showing the specific mechanisms employed to achieve superior performance, including the underlying fluid and other physics principles and their numerical implementation, and the mechanisms that allow the practitioner to duplicate the outstanding performance of this approach under conditions of many robots navigating through obstacle‐dense environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 19 September 2016

Qianqian Zheng, Liangliang Chen, Luyao Lu and Xuesong Ye

Olfaction plays a very important role in daily life. The olfactory system has the ability to recognize, discriminate and identify thousands of odorant compounds with…

Abstract

Purpose

Olfaction plays a very important role in daily life. The olfactory system has the ability to recognize, discriminate and identify thousands of odorant compounds with extremely high sensitivity and specificity. The research on olfactory system has very important values in exploring the mechanisms of information processing in the other sensory nervous systems and brain. Recently, with the development of molecular biological and microelectronics technology research, the study of olfactory cell-based sensors has made great progress. The purpose of this paper is to provide details of recent developments in olfactory cell-based sensors.

Design/methodology/approach

Following an introduction, this paper first discusses some olfactory cell-based biosensors, which focus on the light-addressable potentiometric sensors and the microelectrode arrays. Second, surface modification, microfabrication and microfluidic technology which can improve the efficiency of cell immobilization will be summarized. The research trends of olfactory cell-based sensor in future will be proposed.

Findings

This paper shows that the biosensors’ performance is expected to be greatly improved due to the fast development of nanotechnology, optical technology and microelectronics. More and more emerging intelligent olfactory sensors will have a promising prospect in many application fields, including food quality and safety assessment, environmental monitor and human diseases detection.

Originality/value

This paper provides a detailed and timely review of the rapidly growing research in the olfactory cell-based sensors.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 9 January 2009

Cosimo Distante, Giovanni Indiveri and Giulio Reina

The purpose of this paper is to present a mobile robot with an olfactory capability for hazardous site survey. Possible applications include detection of gas leaks and…

Abstract

Purpose

The purpose of this paper is to present a mobile robot with an olfactory capability for hazardous site survey. Possible applications include detection of gas leaks and dangerous substances along predefined paths, inspection of pipes in factories, and mine sweeping.

Design/methodology/approach

The mobile sentry is equipped with a transducer array of tin oxide chemical sensors, compliant with the standard interface IEEE 1451, which provides odour‐sensing capability, and uses differential drive and spring‐suspended odometric trackballs to move and localize in the environment. The monitoring strategy comprises two stages. First, a path learning operation is performed where the vehicle is remotely controlled through some potential critical locations of the environment, such as valves, pressure vessels, and pipelines. Then, the robot automatically tracks the prerecorded trajectory, while serving as an electronic watch by providing a real‐time olfactory map of the environment. Laboratory experiments are described to validate the approach and assess the performance of the proposed system.

Findings

The approach was shown to be effective in experimental trials where the robot was able to detect multiple odour sources and differentiate between sources very close to one another.

Research limitations/implications

One limitation of the methodology is that it has been specifically designed for odour detection along a well‐defined path in a highly structured environment, such as that expected in the industrial field. The problem of detection of leakages outside the search path is not addressed here.

Practical implications

This mobile robot can be of great value to detect hazardous fluid leakages in chemical warehouses and industrial sites, thus increasing the safety level for human operators.

Originality/value

The paper describes a mobile robotic system, which employs an odour‐sensing capability to perform automated monitoring of hazardous industrial sites. A dynamic model of the mobile nose is also discussed and it is shown that it well describes the behaviour of the system.

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Book part
Publication date: 18 November 2015

Samantha N. N. Cross, Meng-Hsien (Jenny) Lin and Terry L. Childers

The authors broaden the scope of consumer identity by introducing individuals’ olfactory abilities and discussing its impact on perception of the self, consumption…

Abstract

Purpose

The authors broaden the scope of consumer identity by introducing individuals’ olfactory abilities and discussing its impact on perception of the self, consumption behaviors, and consumer well-being.

Methodology/approach

The authors took a mixed-method approach by embedding smell tests during in-depth interviews. A total of 36 interviews were conducted, involving individuals with varying olfactory sensitivity levels, from decreased sensitivity, normal sensitivity, to heightened sensitivity to smell.

Findings

Emergent themes from the interviews include compensation, perception of self and control under three key areas: levels of olfactory sensitivity, the impact of olfactory sensitivity, and the coping strategies used by participants and their families. These findings show that olfactory sensitivity can either enhance or detract from the consumption experience or trigger memories of people, locations or experiences, indirectly affecting consumer well-being and quality of life.

Practical/social implications

Findings reveal that olfactory abilities not only shape and form an individual’s identity but also have a profound impact on (1) consumption behavior: time spent browsing or lingering, purchase order, product choice, or shopping venue which has immense practical implications for marketers; and (2) consumer well-being: developing coping strategies at both the individual and family level to mitigate the issues faced in consumption.

Originality/value

Unlike the other senses, olfactory abilities are often overseen and neglected. The authors show that olfactory abilities are both relevant and salient. The paper is forefront in demonstrating how sensory abilities shape individuals’ identities and in turn influence consumption practices and experiences.

Details

Consumer Culture Theory
Type: Book
ISBN: 978-1-78560-323-5

Keywords

To view the access options for this content please click here
Article
Publication date: 20 March 2017

Krishna Chandra Persaud

The purpose of this paper is to review recent progress in electronic nose technologies, focusing on hybrid systems combining biological elements with physical transducers.

Abstract

Purpose

The purpose of this paper is to review recent progress in electronic nose technologies, focusing on hybrid systems combining biological elements with physical transducers.

Design/methodology/approach

Electronic nose technologies are moving rapidly towards hybrid bioelectronic systems, where biological odour-recognition elements from the olfactory pathways of vertebrates and insects are being utilised to construct new “bionic noses” that can be used in industrial applications.

Findings

With the increased understanding of how chemical senses and the brain function in biology, an emerging field of “neuromorphic olfaction” has arisen.

Research limitations/implications

Important components are olfactory receptor proteins and soluble proteins found at the periphery of olfaction called odorant-binding proteins. The idea is that these proteins can be incorporated into transducers and function as biorecognition elements for volatile compounds of interest.

Practical implications

Major drivers are the security, environmental and medical applications, and the internet of things will be a major factor in implementing low-cost chemical sensing in networked applications for the future.

Social implications

Widespread take up of new technologies that are cheap will minimise the impact of environmental pollution, increase food safety and may potentially help in non-invasive screening for medical ailments.

Originality/value

This review brings together diverse threads of research leading to a common theme that will inform a non-expert of recent developments in the field.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 October 2017

Yanli Lu, Yao Yao, Shuang Li, Qian Zhang and Qingjun Liu

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and…

Abstract

Purpose

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and in consequence the industry. The purpose of the paper is to investigate the interactions between olfactory proteins, odorant-binding proteins (OBPs) and host plant volatiles through the developed olfactory biosensors. It might be helpful to develop novel pest control strategies.

Design/methodology/approach

Using the successfully expressed and purified OBPs of the oriental fruit fly Bactrocera dorsalis, a biosensor was developed by immobilizing the proteins on interdigitated electrodes through nitrocellulose membrane. Based on electrochemical impedance sensing, benzaldehyde emitted by the host plants, such as Beta vulgaris, was detected, which could be used to investigate and analyze the mechanisms of pests’ sense of chemical signals. The relative decreases of charge transfer resistances of the sensor were proportional to the odorant concentrations from 10−7 M to 10−3 M. Meanwhile, the interactions between OBPs and benzaldehyde were studied through the process of molecular docking.

Findings

The paper provides a pest OBPs-based biosensor that could sensitively detect the host odorants benzaldehyde. Meanwhile, the most related amino acids of OBPs that bind to host plant volatiles can be distinguished with molecular docking.

Originality/value

An olfactory biosensor was developed to explore interactions and mechanism between the pest OBPs and benzaldehyde, which showed promising potentials for small organic molecule sensing. Simultaneously, it might be helpful for novel pest control strategies.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 January 2016

Gu Gong and Hua Zhu

The purpose of this study satisfied the need for rapid, sensitive and highly portable identification of an explosion gas. In our study, a battery-operated, low-cost and…

Abstract

Purpose

The purpose of this study satisfied the need for rapid, sensitive and highly portable identification of an explosion gas. In our study, a battery-operated, low-cost and portable gas detection system consisting of a cataluminescence-based sensor array was developed for the detection and identification of explosion gas. This device shows how the discriminatory capacity of sensor arrays utilizing pattern recognition operate in environments.

Design/methodology/approach

A total of 25 sensor units, including common metal oxides and decorated materials, have been carefully selected as sensing elements of 5 × 5 sensor array. Dynamic and static analysis methods were utilized to characterize the performance of the explosion gas detection system to five kinds of explosion gases. The device collects images of chemical sensors before and after exposing to the target gas and then processes those images to extract the unique characteristic for each gas. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to analyze the image patterns.

Findings

Our study demonstrated that the portable gas detection device shows promising perspective for the recognition and discrimination of explosion gas. It can be used for the olfactory system of robot made by integrating the electronic nose and computer together.

Originality/value

The device collects images of chemical sensors before and after exposing to the target gas and then processes those images to extract the unique characteristic for each gas. HCA and (PCA were used to analyze the image patterns. Our study demonstrated that the portable gas detection device shows promising perspective for the recognition and discrimination of explosion gas. It can be used for olfactory system of robot made by integrating the electronic nose and computer together.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 25 February 2014

Chao Liu, Jing Liu, Li Xu and Wei Xiang

Entomology is a useful tool when applied to engineering challenges that have been solved in nature. Especially when these special abilities of olfactory sensation, vision…

Abstract

Purpose

Entomology is a useful tool when applied to engineering challenges that have been solved in nature. Especially when these special abilities of olfactory sensation, vision, auditory perception, fly, jump, navigation, chemical synthesis, exquisite structure and others were connected with mechanization, informationization and intelligentization of modern science and technology, and produced innumerable classical bionic products. The paper aims to discuss these issues.

Design/methodology/approach

All kinds of special abilities of insects and application status have been described and discussed in order to summarize the advanced research examples and supply bibliographic reference to the latters. Future perspectives and challenges in the use of insect bionics were also given.

Findings

In the period of life sciences and information sciences, insect bionics not only promoted the development of modern science and technology on the sides of mechanics, molecule, energy, information and control greatly but also provided new ideas and technologies for the crisis of science and technology, food, environment and ecosystem.

Originality/value

It may provide strategies to solve the problems and be a source of good ideas for researchers.

To view the access options for this content please click here
Article
Publication date: 21 December 2017

Wenli Zhang, Fengchun Tian, An Song, Zhenzhen Zhao, Youwen Hu and Anyan Jiang

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Abstract

Purpose

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Design/methodology/approach

The wide spectral light is used as the sensing medium in the e-nose system based on continuous wide spectrum (CWS) odor sensing, and the sensing response of each sensing element is the change of light intensity distribution.

Findings

Experimental results not only verify the feasibility and effectiveness of the proposed system but also show the effectiveness of least square support vector machine (LSSVM) in eliminating system errors.

Practical implications

Theoretical model of the system was constructed, and experimental tests were carried out by using NO2 and SO2. System errors in the test data were eliminated using the LSSVM, and the preprocessed data were classified by euclidean distance to centroids (EDC), k-nearest neighbor (KNN), support vector machine (SVM), LSSVM, respectively.

Originality/value

The system not only has the advantages of current e-nose but also realizes expansion of sensing array by means of light source and the spectrometer with their wide spectrum, high resolution characteristics which improve the detection accuracy and realize real-time detection.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 4 March 2014

Andrei Novac and Robert G. Bota

How does the human brain absorb information and turn it into skills of its own in psychotherapy? In an attempt to answer this question, the authors will review the…

Abstract

How does the human brain absorb information and turn it into skills of its own in psychotherapy? In an attempt to answer this question, the authors will review the intricacies of processing channels in psychotherapy and propose the term transprocessing (as in transduction and processing combined) for the underlying mechanisms. Through transprocessing the brain processes multimodal memories and creates reparative solutions in the course of psychotherapy. Transprocessing is proposed as a stage-sequenced mechanism of deconstruction of engrained patterns of response. Through psychotherapy, emotional-cognitive reintegration and its consolidation is accomplished. This process is mediated by cellular and neural plasticity changes.

1 – 10 of 503