Search results

1 – 5 of 5
Article
Publication date: 19 September 2016

Qianqian Zheng, Liangliang Chen, Luyao Lu and Xuesong Ye

Olfaction plays a very important role in daily life. The olfactory system has the ability to recognize, discriminate and identify thousands of odorant compounds with extremely…

Abstract

Purpose

Olfaction plays a very important role in daily life. The olfactory system has the ability to recognize, discriminate and identify thousands of odorant compounds with extremely high sensitivity and specificity. The research on olfactory system has very important values in exploring the mechanisms of information processing in the other sensory nervous systems and brain. Recently, with the development of molecular biological and microelectronics technology research, the study of olfactory cell-based sensors has made great progress. The purpose of this paper is to provide details of recent developments in olfactory cell-based sensors.

Design/methodology/approach

Following an introduction, this paper first discusses some olfactory cell-based biosensors, which focus on the light-addressable potentiometric sensors and the microelectrode arrays. Second, surface modification, microfabrication and microfluidic technology which can improve the efficiency of cell immobilization will be summarized. The research trends of olfactory cell-based sensor in future will be proposed.

Findings

This paper shows that the biosensors’ performance is expected to be greatly improved due to the fast development of nanotechnology, optical technology and microelectronics. More and more emerging intelligent olfactory sensors will have a promising prospect in many application fields, including food quality and safety assessment, environmental monitor and human diseases detection.

Originality/value

This paper provides a detailed and timely review of the rapidly growing research in the olfactory cell-based sensors.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2017

Krishna Chandra Persaud

The purpose of this paper is to review recent progress in electronic nose technologies, focusing on hybrid systems combining biological elements with physical transducers.

Abstract

Purpose

The purpose of this paper is to review recent progress in electronic nose technologies, focusing on hybrid systems combining biological elements with physical transducers.

Design/methodology/approach

Electronic nose technologies are moving rapidly towards hybrid bioelectronic systems, where biological odour-recognition elements from the olfactory pathways of vertebrates and insects are being utilised to construct new “bionic noses” that can be used in industrial applications.

Findings

With the increased understanding of how chemical senses and the brain function in biology, an emerging field of “neuromorphic olfaction” has arisen.

Research limitations/implications

Important components are olfactory receptor proteins and soluble proteins found at the periphery of olfaction called odorant-binding proteins. The idea is that these proteins can be incorporated into transducers and function as biorecognition elements for volatile compounds of interest.

Practical implications

Major drivers are the security, environmental and medical applications, and the internet of things will be a major factor in implementing low-cost chemical sensing in networked applications for the future.

Social implications

Widespread take up of new technologies that are cheap will minimise the impact of environmental pollution, increase food safety and may potentially help in non-invasive screening for medical ailments.

Originality/value

This review brings together diverse threads of research leading to a common theme that will inform a non-expert of recent developments in the field.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 October 2017

Yanli Lu, Yao Yao, Shuang Li, Qian Zhang and Qingjun Liu

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and in…

Abstract

Purpose

Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and in consequence the industry. The purpose of the paper is to investigate the interactions between olfactory proteins, odorant-binding proteins (OBPs) and host plant volatiles through the developed olfactory biosensors. It might be helpful to develop novel pest control strategies.

Design/methodology/approach

Using the successfully expressed and purified OBPs of the oriental fruit fly Bactrocera dorsalis, a biosensor was developed by immobilizing the proteins on interdigitated electrodes through nitrocellulose membrane. Based on electrochemical impedance sensing, benzaldehyde emitted by the host plants, such as Beta vulgaris, was detected, which could be used to investigate and analyze the mechanisms of pests’ sense of chemical signals. The relative decreases of charge transfer resistances of the sensor were proportional to the odorant concentrations from 10−7 M to 10−3 M. Meanwhile, the interactions between OBPs and benzaldehyde were studied through the process of molecular docking.

Findings

The paper provides a pest OBPs-based biosensor that could sensitively detect the host odorants benzaldehyde. Meanwhile, the most related amino acids of OBPs that bind to host plant volatiles can be distinguished with molecular docking.

Originality/value

An olfactory biosensor was developed to explore interactions and mechanism between the pest OBPs and benzaldehyde, which showed promising potentials for small organic molecule sensing. Simultaneously, it might be helpful for novel pest control strategies.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Sari Lakkis, Rafic Younes, Yasser Alayli and Mohamad Sawan

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these…

1601

Abstract

Purpose

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these technologies in a comparative way.

Design/methodology/approach

In this article, the authors state the most of the methods used in gas sensing discuss their advantages and disadvantages and at last the authors discuss the ability of their miniaturization comparing between them in terms of their sensing parameters like sensitivity, selectivity and cost.

Findings

In this article, the authors will try to cover most of the important methods used in gas sensing and their recent developments. The authors will also discuss their miniaturization potential trying to find the best candidate among the different types for the aim of miniaturization.

Originality/value

In this article, the authors will review most of the methods used in gas sensing and discuss their miniaturization potential delimiting the research to a certain type of technology or application.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 February 2012

Olivia M. Flaherty, Xiaoyun Cui, Divya Rajamohan, David Hutt, Chris Denning, Paul P. Conway and Andrew A. West

The purpose of this paper is to highlight a novel manufacturing process for a biochip with a multi‐electrode array (MEA) that is specifically designed for use in characterising…

Abstract

Purpose

The purpose of this paper is to highlight a novel manufacturing process for a biochip with a multi‐electrode array (MEA) that is specifically designed for use in characterising cardio‐active substances and to demonstrate a novel proposed solution prototype that has been constructed to meet the needs of end‐users.

Design/methodology/approach

Practical problems encountered with conventional MEA biochips are described and a novel biochip design to tackle these problems is presented. The manufacturing approach used to produce the prototypes of that design is described and depicted.

Findings

The novel prototype MEA biochips were successfully manufactured using conventional electronics manufacturing approaches. Prototypes demonstrated limited successes in the early stages of testing. Further revisions of the feature geometry are required to implement an alternative MEA biochip that is suitably reliable.

Research limitations/implications

Basic photolithography techniques have been used to construct a base substrate for proof‐of‐principle studies. Increased sophistication in manufacturing stages is required in future iterations of the proposed concept.

Originality/value

This paper introduces a problem encountered by MEA system adopters that requires a suitable solution. The scale up of an electronics manufacturing process‐based solution to the problems described holds much promise for the screening of new chemical entities.

Access

Year

Content type

Article (5)
1 – 5 of 5