Search results

1 – 2 of 2
Article
Publication date: 26 September 2019

Olayinka Mohammed Olabanji and Khumbulani Mpofu

The purpose of this paper is to determine the suitability of adopting hybridized multicriteria decision-making models as a decision tool in engineering design. This decision tool…

Abstract

Purpose

The purpose of this paper is to determine the suitability of adopting hybridized multicriteria decision-making models as a decision tool in engineering design. This decision tool will assist design engineers and manufacturers to determine a robust design concept before simulation and manufacturing while all the design features and sub features would have been identified during the decision-making process.

Design/methodology/approach

Fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) are hybridized and applied to obtain optimal design of a reconfigurable assembly fixture (RAF) from a set of alternative design concepts. Design features and sub features associated with the RAF are identified and compared using fuzzified pairwise comparison matrices to obtain weights of their relative importance in the optimal design. The FAHP obtained the fuzzy synthetic extent (FSE) values of the design features and sub features. The FSE values are used as weights of the design features and sub features in generating the decision matrix. FTOPSIS and FTOPSIS based on left and right scores were adopted to predict effects of the weights. Results were obtained for normalized and unnormalized weights of the design features and its effects on the relative closeness coefficients of the design alternatives.

Findings

The improved performance of the FTOPSIS based on left and right scores is due to the involvement of the left and right scores of weights of the design features in the computation of distances from positive and negative ideal solutions. Embedding the weights of the design features in the normalized decision matrix before estimating the distances of the design concepts from ideal solutions reduces the dependency of the closeness coefficients on the weights of the design features. This also decreases the difference in the final values of the design concepts. In essence, the weights of the design features have an impact in the closeness coefficient. There is reduction in the closeness coefficients of the design concepts due to normalization of the weights of the design features. However, normalizing the weights of the design features did not affect the variations in the final values of the design concept. As the final value of the design concepts can be influenced by the normalized weights of the design features, it can be implied that normalization of weights of the sub features will also affect the decision matrix. The study has been able to proof that hybridizing FAHP and FTOPSIS can produce effective results for decisions on optimal design by the application of FTOPSIS based on left and right scores rather than the general FTOPSIS.

Originality/value

This research develops a hybridized multicriteria decision-making model for decision-making in engineering design. It presents a detailed extension of hybridized FAHP and FTOPSIS based on left and right scores as a useful tool for considering the relative importance of design features and sub features in optimal design selection.

Article
Publication date: 2 February 2015

Fatme Makssoud, Olga Battaïa, Alexandre Dolgui, Khumbulani Mpofu and Olayinka Olabanji

The purpose of this study is to develop a new mathematical model and an exact solution method for an assembly line rebalancing problem. When an existing assembly line has to be…

Abstract

Purpose

The purpose of this study is to develop a new mathematical model and an exact solution method for an assembly line rebalancing problem. When an existing assembly line has to be adapted to a new production context, the line balancing, resources allocation and component management solutions have to be revised. The objective is to minimize the number of modifications to be done in the initial line in order to reduce the time and investment needed to meet new production requirements. The proposed model is evaluated via a computational experiment. The obtained results the efficacy of the proposed method.

Design/methodology/approach

This paper develops a new mathematical model and an exact solution method for an assembly line rebalancing problem with the objective to minimize the number of modifications to be done in the initial line to reduce the time and investments needed to meet new production requirements.

Findings

The computational experiments show the efficacy of the proposed method.

Originality/value

These reconfiguration costs were analysed for different part-feeding policies that can be adopted in an assembly line.

Details

Assembly Automation, vol. 35 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 2 of 2