Search results

1 – 10 of 394
Article
Publication date: 16 November 2022

Mohd Nazri Ahmad, Mohamad Ridzwan Ishak, Mastura Mohammad Taha, Faizal Mustapha and Zulkiflle Leman

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber

Abstract

Purpose

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber composite filament for fused deposition modeling (FDM).

Design/methodology/approach

A new feedstock material for FDM comprising oil palm fiber and ABS as a matrix was developed by a twin screw extruder. The composite filament contains 0, 3, 5 and 7 Wt.% of oil palm fiber in the ABS matrix. The tensile test is then performed on the fiber composite filament, and the wire diameter is measured. In this study, the Archimedes method was used to determine the density and the porosity of the filament. The outer surface of the wire composite was examined using an optical microscope, and the analysis of variance was used to assess the significance and the relative relevance of the primary factor.

Findings

The results showed that increasing the fiber loading from 0.15 to 0.4 MPa enhanced tensile strength by 60%. Then, from 16.1 to 18.3 MPa, the Young’s modulus rose by 22.8%. The density of extruded filament decreased and the percentage of porosity increased when the fiber loading was increased from 3 to 7 Wt.%. The diameter deviation of the extruded filaments varied from −0.21 to 0.04 mm.

Originality/value

This paper highlights a novel natural resource-based feedstock material for FDM. Its mechanical and physical properties were also discovered.

Article
Publication date: 4 October 2017

M.R.M. Huzaifah, S.M. Sapuan, Z. Leman, M.R. Ishak and M.A. Maleque

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Abstract

Purpose

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Design/methodology/approach

The approach of this review paper is to present previous work on natural fibres and their composites. Then a review of several important aspects such as history, origin, botanic description, distribution, application and characterisation of sugar palm tree, and its fibre is presented. Finally a review of properties and characterisation of sugar palm composites is presented.

Findings

Findings of this review include the potential application of natural fibres and their composites for engineering application, the use of sugar palm and its fibres, as well as the suitability of sugar palm composites in engineering application after conducting review of their performance and characterisation.

Originality/value

The value of this review is to highlight the potential of natural fibres, natural fibre composites, sugar palm, sugar palm fibres and sugar palm composites as materials for engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 March 2018

Desalegn Atalie and Rotich K. Gideon

This study aims at extracting and characterizing palm leaf fibers from Elaeis guineensis species of palm trees found in Ethiopia.

Abstract

Purpose

This study aims at extracting and characterizing palm leaf fibers from Elaeis guineensis species of palm trees found in Ethiopia.

Design/methodology/approach

The fibers were extracted using three methods: manually, through water retting and chemically with sodium hydroxide. Physical parameters of the extracted fibers were evaluated, including tensile strength, fiber fineness, moisture content, degradation point and functional groups. Its cellulose, hemicellulose and lignin contents were also analyzed.

Findings

The results showed that the palm leaf fibers have a comparable fiber strength (170-450 MPa), elongation (0.95-1.25 per cent), fiber length (230-500 mm) and moisture regain (8-10 per cent) to jute, sisal and flax and thus can be used for technical textile application.

Originality/value

The fibers extracted using the water retting method had better properties than the other extraction methods. Its fiber length of 307 mm, cellulose content of 58 per cent, strength of 439 MPa and elongation of 1.24 per cent were the highest for all the extracted fibers. When compared with other fibers, palm leaf fiber properties such as tensile strength (439 MPa), elongation (1.24 per cent), moisture content (7.9-10.4 per cent and degradation point (360-380°C) were consistent with those of jute, sisal and ramie fibers. Hence, palm leaf fibers can be used for technical textile applications such as composite reinforcement.

Details

Research Journal of Textile and Apparel, vol. 22 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 May 2021

Mohd Fadzli Bin Abdollah, Hilmi Amiruddin and Mohamad Jabbar Nordin

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake…

Abstract

Purpose

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake friction material.

Design/methodology/approach

Fabrication of the sample was conducted by using a hot-compression method. The tribological test was carried out by deploying a ball-on-disk tribometer. Analysis of the data was then done by using the Taguchi approach as well as analysis of variance.

Findings

The results indicated that all design variables (fibre composition, length and treatment) are not statistically significant, as all p-values are greater than 0.05. Remarkably, irrespective of the fibre treatment, the wear rate and coefficient of friction (COF) distribution suggested that a smaller fibre length with a high fibre composition might enhance the composite’s tribological performance with COF of 0.4 and wear rate below than 1 × 10–9 mm3/Nm. The predominant wear mechanisms were identified as micro-cracks, fine grooves and fibre debonding.

Research limitations/implications

In this study, all-inclusive scrutiny needs to be carried out for further exploration.

Originality/value

The main contribution and novelty of this study are opening a new perspective on the formulation of new substances from bio-based material (i.e. OPF) that possess superior tribological characteristics for friction-based applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2004

Kamarulzaman Nordin, Mohd Ariff Jamaludin, Mansur Ahmad, Hashim W. Samsi, Abdul Hamid Salleh and Zaihan Jalaludin

This paper discusses the results from the initiative that has been undertaken to utilize residues from oil palm re‐plantation, particularly the oil palm trunk (OPT) for the…

2669

Abstract

This paper discusses the results from the initiative that has been undertaken to utilize residues from oil palm re‐plantation, particularly the oil palm trunk (OPT) for the production of laminated veneer lumber (LVL). Efficient use of such residues is vital in order to minimize the environmental burdens associated with the disposal of the oil palm residues, thus ensuring the future growth of Malaysian palm oil industry. The bending and compression strength of the OPT LVL produced were accessed and compared with Malaysian oak (formerly known as rubberwood), timber species that is commonly used in the manufacture of furniture in Malaysia. Properties of OPT LVL were found almost comparable to solid Malaysian oak in terms of bending and compression strength. Combination of OPT veneers with several layers of Malaysian oak veneers during the process of LVL manufacturing has resulted in the improvement in bending and compression strength of the LVL as compared to those produced entirely from OPT. In addition, such practice also produced LVL board with far less variation in strength properties as compared to solid OPT properties. With further research and development embarked upon the gluability of the OPT materials, the overall performance of the OPT LVL could be improved for commercial utilization of OPT wastes in the near future. Development higher value‐added by‐products from oil palm industry residues, would benefit the industry through reduction of the overall environmental burden and would place it on a new environmentally sustainable platform.

Details

Management of Environmental Quality: An International Journal, vol. 15 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 10 May 2022

Fatimah De'nan, Megat Azmi Megat Johari, Shaneez Christie Anak Nyandau and Nor Salwani Hashim

The purpose of this study is to know the influence of palm oil fuel ash and metakaolin on the strength of concrete and crack resistance of reinforced concrete beam. An ordinary…

Abstract

Purpose

The purpose of this study is to know the influence of palm oil fuel ash and metakaolin on the strength of concrete and crack resistance of reinforced concrete beam. An ordinary portland cement has been used in the concretes production where it is an important material to be considered due to its nature that reacts with every substance present. During the cement production, a significant amount of carbon dioxide is emitted from the clinker in rotary kiln and lot of energy is required in the production processes. Such an event can be prevented by replacing the part of cement with metakaolin (MK) and palm oil fuel ash (POFA). Aside from being a cementitious alternative, the materials can also contribute to a greener environment and more sustainable building, as POFA is available in Malaysia and may be used to substitute cement and minimize pollution.

Design/methodology/approach

This study assesses the effect of MK and POFA on the concrete in terms of compressive strength and cracks pattern of the reinforced concrete beam based on the relevant previous studies.

Findings

From this study, the compressive strength of concrete containing MK and POFA was higher than the control mix with the percentage of improvement in the range of 0.8%–78.2% for MK and 0.5%–14%, respectively. The optimum content of MK and POFA is between the range of 10% and 15% and 10% and 20%, respectively, to achieve high strength of concrete. Other than that, the inclusion of MK to the concrete mix improves the strength of reinforced concrete beams and reduces cracks on the surface of reinforced concrete beams, whereas the inclusion of POFA to the concrete mix increases the cracks on reinforced concrete beams. The cracks appeared within the flexure zone of every beam containing the MK and POFA.

Originality/value

It was found that the fineness of MK and POFA has a significant influence on the mechanical properties of concrete.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 January 2020

Almasdi Syahza and Brilliant Asmit

This paper aims to present the development of palm oil sector and future challenge in Riau Province Indonesia, which includes sustainable plantation development.

629

Abstract

Purpose

This paper aims to present the development of palm oil sector and future challenge in Riau Province Indonesia, which includes sustainable plantation development.

Design/methodology/approach

This research was conducted through a survey with developmental research method. The research location is in the Province of Riau, which is the potential development of oil palm plantation. The land areas of Riau are Kampar, Rokan Hulu and Kuantan Singingi, while the coastal areas are Pelalawan, Siak, Bengkalis, Indragiri Hilir, Indragiri Hulu and Rokan Hilir. The socio-economic and environmental aspects of sustainability level of palm oil plantations were analyzed using a multi-dimensional scaling approach that was modified into a Rap-Insus-Pom.

Findings

Development of palmoil plantations results in land conversion, posing potential erosio. In anticipating environmental damage, the Government of Indonesia imposes the Indonesian Sustainable Palm Oil (ISPO) policy. The results of ISPO policy show that Indonesian crude palm oil products are environmentally friendly.

Originality/value

This research is one of few studies that investigate the development of palm oil sector and future challenge in Riau Province, Indonesia. Riau Province still needs 13 units of palm oil mills with capacity of 60 tons per hour. Find strategies to regulate palm oil farming institutions and derivative products to enhance growth and economic development in the region and find production centers and development areas for palm oil local industries in potential regions.

Details

Journal of Science and Technology Policy Management, vol. 11 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 25 October 2018

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Mohd Rody Bin Mohamad Zin and Hilmi Amiruddin

The purpose of this paper is to study the effect of hydrogen (H2) gas on the graphene growth from fruit cover plastic waste (FCPW) and oil palm fibre (OPF), as a solid feedstock…

Abstract

Purpose

The purpose of this paper is to study the effect of hydrogen (H2) gas on the graphene growth from fruit cover plastic waste (FCPW) and oil palm fibre (OPF), as a solid feedstock, towards the coefficient of friction (COF) properties.

Design/methodology/approach

Graphene film growth on copper (Cu) substrate was synthesised from FCPW and OPF, as a solid feedstock, using the chemical vapour deposition (CVD) method, at atmospheric pressure. The synthesised graphene was characterised using Raman spectroscopy, Scanning Electron Microscopy (SEM) and Electron Dispersed Spectroscopy (EDS). Surface hardness and roughness were measured using a nano-indenter and surface profilometer, respectively. Then, a dry sliding test was executed using a ball-on-disc tribometer at constant speed, sliding distance and load, with coated and uncoated copper sheet as the counter surface.

Findings

The presence of H2 gas reduced the running-in time of the dry sliding test. However, there is no significant effect at the constant COF region, where the graphene growth from FCPW shows the lowest COF among other surfaces.

Research limitations/implications

This paper is limited to graphene growth using the CVD method with selected parameters.

Originality/value

To the authors’ knowledge, this is the first paper on growing graphene from palm oil fiber via the CVD method and its subsequent analysis, based on friction coefficient properties.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Book part
Publication date: 4 May 2018

Zulnazri and Sulhatun

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB…

Abstract

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB) biomass microfillers.

Design/Methodology/Approach – Methods of physical and chemical modification of OPEFB fibers into the LDPE matrix and the addition of some compatibilizer such as MAPE and xylene process through melt blending can improve mechanical properties, electrical properties, biodegradability, and improve the morphology of composites.

Research Limitations/Implications – These composites are prepared by the following matrix ratio: filler (70:30)% and filler size (63, 75, 90, and 106) μm. The LDPE plastic is crushed to a size of 0.5–1 cm, then pressed with hot press free heating for 5 min and with a pressure of 10 min at 145 °C. Based on the characterization obtained, the tensile strength and the high impact on the use of 106 μm filler is 13.86 MPa and 3,542.6 J/m2, and thermal stability indicates the degradation temperature (T0) 497.83 °C. FT-IR analysis shows the presence of functional groups of cellulose and lignin molecules derived from TKKS collected in the composite.

Practical Implications – Based on the characterization obtained, this composite can be applied as furniture material and vehicle dashboard.

Originality/Value – Composites obtained from recycle of LDPPE plastics waste has some advantages such as good compatibility and high tensile strength. This composite used the OPEFB filler whose size is in micrometer, and so this product is different from other products.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Article
Publication date: 13 January 2020

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Hilmi Amiruddin, Mohd Rody Bin Mohamad Zin and S. Liza

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Abstract

Purpose

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Design/methodology/approach

The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads.

Findings

The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene.

Originality/value

The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 394