Search results

1 – 10 of 195
Article
Publication date: 20 April 2020

Peng Sun, Weifang Chen, Yusu Shen and Dan Wang

As an important part of the rotor system, the damping coefficient of ball bearing has a great influence on the dynamic characteristics of the system. This study aims to propose a…

Abstract

Purpose

As an important part of the rotor system, the damping coefficient of ball bearing has a great influence on the dynamic characteristics of the system. This study aims to propose a theoretical calculation method and an experimental test method to obtain the damping coefficient of ball bearing.

Design/methodology/approach

Based on Hertzian contact theory and elastohydrodynamic lubrication theory, the point contact oil film damping analysis model of ball bearing is established. The comprehensive damping calculation method considering external radial load, centrifugal force, ball spin, rotational speed and lubricating oil film is derived. The multigrid method is used to obtain the oil film pressure and thickness distribution in the contact zone. The variation trend of comprehensive damping with bearing radial load, rotational speed, oil film thickness and viscosity is analyzed. The test platform is designed and the influencing factors of damping are tested.

Findings

The validity of the model and reliability of the test device are verified by comparing the good consistency obtained in the work. The results show that the comprehensive damping of ball bearing increases with the increase of radial load and decreases with the increase of rotational speed.

Originality/value

At present, the existing bearing damping model can achieve approximate calculation of damping, but the factors considered in these models are not comprehensive enough. Besides, few studies exist regarding test platform of bearing damping, and a perfect test plan has not yet been formed. In this paper, the comprehensive damping calculation model of ball bearing is improved, and a complete experimental scheme is proposed to provide reference for the comprehensive damping theory and experimental research of bearing.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0342/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Shaocheng Zhu, Weihua Zhang and Daniel Nelias

The purpose of this study is to propose a new method to solve transient elasto-hydrodynamic lubrication (EHL) problem.

Abstract

Purpose

The purpose of this study is to propose a new method to solve transient elasto-hydrodynamic lubrication (EHL) problem.

Design/methodology/approach

First, the steady-state EHL solution is modified so that the elastic deformation theory is combined with oil film stiffness distribution instead of steady-state Reynolds equation. Second, subsequent dynamic EHL procedure develops, recursively using transient distributed oil film stiffness and damping, where each time-marching solution is iteratively searched by ensuring both oil film force growth and elastic deformation update for each load increment.

Findings

This method increases calculation speed and provides both distributed EHL stiffness and damping for transient regimes.

Originality/value

This method is of interest for fast applications such as rolling bearings or gears.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Junchao Zhu, GuangCheng Wei, Chen Zong and DaKuan Xin

This paper aim to take the ship shaft stern bearing as the research object, and studies the influence of journal axial vibration on bearing dynamic characteristics under different…

Abstract

Purpose

This paper aim to take the ship shaft stern bearing as the research object, and studies the influence of journal axial vibration on bearing dynamic characteristics under different misaligned angles and rotation speeds.

Design/methodology/approach

Computational fluid dynamics (CFD) and harmonic excitation method were used to build bearing unstable lubrication model, and the dynamic mesh technology was used in calculation.

Findings

The results indicate that journal axial vibration has a significant effect on bearing dynamic characteristics, like maximum oil film pressure, bearing stiffness and damping coefficients, and the effect is positively correlated with journal misaligned angle. The effect of shaft rotation speed and journal axial vibration on bearing dynamics characteristics are independent; they have no coupling. Bearing axial stiffness is mainly affected by the journal axial displacement, bearing axial damping is mainly affected by journal axial velocity and they are positively correlated with the misaligned angle. The influence of rotational speed on bearing axial stiffness and axial damping is not obvious.

Originality/value

This paper establishes the bearing dynamic model by CFD and harmonic excitation method with consideration of cavitation effect and analyzing the influence of journal axial vibration on the dynamic characteristics. The results are benefit to the design of ship propulsion shaft and the selection of stern bearing. Also, they are of great significance to improve the operation stability of the shaft bearing system and the vitality of the ship.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0337/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2024

Heji Zhang, Dezhao Lu, Wei Pan, Xing Rong and Yongtao Zhang

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping

Abstract

Purpose

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping characteristics, and provides certain beneficial guidance for the design of large-span closed hydrostatic guideway on the basis of providing a large vertical load bearing capacity.

Design/methodology/approach

The Reynolds’ equation and flow continuity equation are solved simultaneously by the finite difference method, and the perturbation method and the finite disturbance method is used for calculating the dynamic characteristics. The static and dynamic characteristics, including recess pressure, flow of lubricating oil, carrying capacity, pitch moment, yaw moment, dynamic stiffness and damping, are comprehensively analyzed.

Findings

The designed closed hydrostatic guideway has the ability to resist large lateral load, pitch moment and yaw moment and has good stiffness and damping characteristics, on the basis of being able to provide large vertical carrying capacity, which can meet the application requirements of heavy two-plate injection molding machine (TPIMM).

Originality/value

This paper researches static and dynamic characteristics of a large-span six-slider closed hydrostatic guideway used in heavy TPIMM, emphatically considering pitch moment and yaw moment. Some useful guidance is given for the design of large-span closed hydrostatic guideway.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2018

Mahmoud Hammou, Ahmed Bouzidane, Marc Thomas, Aboubakeur Benariba and Mohamed Bouzit

The purpose of this study is to examine the dynamic performance of an orifice-compensated three-pad hydrostatic squeeze film damper.

Abstract

Purpose

The purpose of this study is to examine the dynamic performance of an orifice-compensated three-pad hydrostatic squeeze film damper.

Design/methodology/approach

A numerical model has been developed and presented to study the effect of eccentricity ratio and pressure ratio on the static and dynamic characteristics of an orifice-compensated three-pad hydrostatic squeeze film damper. It is assumed that the fluid flow is incompressible, laminar, isothermal and steady-state. The finite difference method has been used to solve Reynolds equation governing the lubricant flow in film thickness of hydrostatic bearing. The numerical results obtained are discussed, analyzed and compared between three- and four-lobe hydrostatic journal bearings available in the literature.

Findings

It was found that the influence of eccentricity ratio on dynamic characteristics of an orifice-compensated three-pad hydrostatic squeeze film damper appears to be essentially controlled by the concentric pressure ratio. It was also found that the three-pad hydrostatic squeeze film damper has higher stiffness than three and four-lobe hydrostatic journal bearings.

Originality/value

In fact, the results obtained show that this type of hydrostatic squeeze film damper provides hydrostatic designers a new bearing configuration suitable to control rotor vibrations.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 September 2020

Yazhou Mao, Yang Jianxi, Jinchen Ji, Wenjing Xu and Quanyuan Guo

Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims…

Abstract

Purpose

Currently, there is a lack of fast and highly accurate on analytical solution of Reynolds equation for evaluating the characteristics of surface textured bearing. This paper aims to develop such an analytical solution of Reynolds equation for an effective analysis of the characteristics of surface textured bearings.

Design/methodology/approach

By using the separation of variables method and mean eigenvalue method, the analytical solution is constructed. The CFD simulations and experimental results are used to validate the correctness of the analytical solution.

Findings

The analytical solution can accurately evaluate the characteristics of textured bearings. It is found that the larger the eccentricity ratio and aspect ratio, the greater the oil film force. It also found that the smaller the eccentricity ratio, the larger the Sommerfeld number S. When eccentricity ratio e = 0.65, the attitude angles of different oil boundaries are same. The effect of different aspect ratios on dynamic stiffness and damping coefficient generally follows a same trend. It is numerically shown that the critical speed of rotor-bearing is 3500 rpm.

Originality/value

The analytical solution provides a simple yet effective way to study the characteristics of surface textured bearings.

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 October 2019

Changmin Chen, Jianping Jing and Jiqing Cong

The infinitesimal perturbation (IP) method is commonly used in calculating stiffness and damping of journal bearing in horizon rotor systems. The boundary condition (BC) for the…

158

Abstract

Purpose

The infinitesimal perturbation (IP) method is commonly used in calculating stiffness and damping of journal bearing in horizon rotor systems. The boundary condition (BC) for the perturbed pressure is assumed being zero at leading edge of film, although it is usually not zero because of nonzero pressure gradient. This assumption is sufficiently accurate for most purpose in horizon rotors. However, for journal bearing in vertical rotor-bearing systems, the BC with the assumption in IP method will bring in significant errors in calculating linear dynamic coefficients. This paper aims to propose a method to obtain the dynamic coefficients of journal bearing in vertical rotors.

Design/methodology/approach

The stiffness and damping are approached based on IP method and the modified BC of perturbed pressure. As it is difficult to predict perturbed pressure at leading edge at a fixed coordinate system using IP method, a dynamic coordinate system is introduced in this method, of which the origin on circumferential direction is defined as the leading edge of film.

Findings

The effectiveness and accuracy of proposed IP method in dynamic coordinate (IPMDC) system are verified by comparing the obtained results with analytical solutions. The comparison shows that the results from IPMDC present a good agreement with the analytic solutions.

Originality/value

The proposed method can be applied in obtaining linear dynamic coefficients of journal bearing in vertical rotors with high precisions. Instead of the usual nonlinear analysis of vertical rotors, this method provides a feasibility of predicting the instability threshold of vertical rotor-bearing systems via linear models.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 September 2022

CholUk Ri, Hwan Namgung, Zhunhyok Zhang, Chunghyok Chae, Kwangil Ri, Pongguk Ho and Ryong Zhang

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the…

Abstract

Purpose

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the dynamic characteristics of the cylindrical roller bearings, it is important to accurately calculate the stiffness of the cylindrical roller bearings. The stiffness of the cylindrical roller bearings is very important in the analysis of the vibration characteristics of the rotor system. Therefore, in this paper, the method of creating a comprehensive stiffness model of the cylindrical roller bearing is mentioned. The purpose of this study is to improve the dynamic stability of the rotor system supported by the cylindrical roller bearing by accurately establishing the comprehensive stiffness calculation model of the cylindrical roller bearings.

Design/methodology/approach

In consideration of the radial clearance of the cylindrical roller bearing, the radial load acting on the cylindrical roller bearing was derived, and based on this, a model for calculating the Hertz contact stiffness of the cylindrical roller bearing was created. Based on the load considering the radial clearance, an oil film stiffness model of the cylindrical roller bearing was created under the elastohydrodynamic lubrication (EHL) theory. Then, the comprehensive stiffness was calculated by combining Hertz contact stiffness and the oil film stiffness of the cylindrical roller bearing, and the dynamic parameters are calculated by using the MATLAB program.

Findings

When the radial clearance of the cylindrical roller bearing is considered, the comprehensive stiffness is larger than when the radial clearance is not taken into account, and the radial clearance of the cylindrical roller bearing is an important factor that directly affects the comprehensive stiffness of the cylindrical roller bearing.

Originality/value

In this paper, based on Hertz contact theory and the EHL theory, the authors investigated the method of creating a comprehensive stiffness model of the cylindrical roller bearing considering the radial clearance. These results will contribute to the theoretical basis for studying the mechanics of cylindrical roller bearings and optimizing their structures, and they will provide an important theoretical basis for analyzing the dynamic characteristics of the rotor system supported by the cylindrical roller bearing.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 September 2022

Xin Qin, Xiaojing Wang, Zhengmao Qiu, Yifan Hao and Yan Zhu

This study aims to present a novel hydrostatic squeeze film-metal mesh journal bearing (HS-MMJB), which uses both hydrostatic squeeze film damper (HSFD) and metal mesh damper

Abstract

Purpose

This study aims to present a novel hydrostatic squeeze film-metal mesh journal bearing (HS-MMJB), which uses both hydrostatic squeeze film damper (HSFD) and metal mesh damper (MMD), to suppress the vibration of rotor-bearing systems.

Design/methodology/approach

The lubrication equations were introduced to calculate the dynamic characteristics of HS-MMJB, and the response analyses of rotor systems were carried out. Experiments were conducted to study the vibration reduction of a rotor system with HS-MMJB. In addition, experiments for different oil supply pressures in the HS-MMJB were conducted.

Findings

The theoretical and experimental results show that the HS-MMJB exhibits excellent damping and vibration attenuation characteristics. Moreover, the stability of the rotor system can be improved by controlling the oil supply pressure.

Originality/value

There is a dearth of research on vibration characteristics of rotor system support by journal bearing combining HSFD and MMD. Moreover, the active oil pressure control is implemented to improve the stability of rotor system.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 195