Search results

1 – 10 of 339
Article
Publication date: 2 October 2019

Oluseyi Moses Ajayi, Wayne Martindale and Mark Swainson

The purpose of this paper is twofold: first, it aims to investigate how salt and sugar reduction in foods due to the pressure from the emerging food regulations will affect the…

Abstract

Purpose

The purpose of this paper is twofold: first, it aims to investigate how salt and sugar reduction in foods due to the pressure from the emerging food regulations will affect the physico-electrical properties (PEPs) of orange juice and tomatoes during a selected PEP-dependent thermal processing. Second, the authors are keen to understand how variations in salt and sugar ingredients will affect the time-temperature processing requirements.

Design/methodology/approach

PEPs of the samples (orange juice and tomatoes) were measured using the KD2 thermal analyser and RS conductivity metre. Both samples with varying salt and sugar levels were subjected to ohmic heating processing using a 10 kW ohmic heater. Dehydration rates and processing times for pasteurisation were obtained.

Findings

Electrical conductivity increases with added salt in tomato puree but decreases with added sugar in orange juice. Statistical evidence confirmed significant changes in heating rates and processing times of tomatoes and orange juice as their relevant salt and sugar levels change. Reduction in salt content in tomato puree led to increase in time and energy for the thermal processes. While reduction in added sugar in orange juice results led to reduction in processing time and energy requirement for the processing operation.

Research limitations/implications

The study is limited to small change in salt and sugar variations in order to reflect recommended limits. There were therefore no significant changes in thermal conductivity for the range investigated. Also this study is focussed on two food products.

Practical implications

Current pressure on the need to reduce salt and sugar in foods necessitates research to increase food processing industry insight into the process and product impacts of such recipe changes, with particular regard to processing efficiency and product safety and quality.

Originality/value

This study represents an attempt to understand the impact of salt and sugar variations on properties and processing requirements of tomato puree and orange juice.

Details

British Food Journal, vol. 122 no. 1
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 19 January 2022

Kushal Sharma, Sanjay Kumar and Neha Vijay

In this paper the effects of viscous dissipation and ohmic heating on the fluid flow and resulting heat and mass transfer caused by vertically moving rotating disk are explored…

Abstract

Purpose

In this paper the effects of viscous dissipation and ohmic heating on the fluid flow and resulting heat and mass transfer caused by vertically moving rotating disk are explored with magnetic field acting perpendicular to disk rotation. The flow regime is also under the influence of Dufour and Soret effects.

Design/methodology/approach

An approach of similarity transformation is used to transform the governing set of equations into non-linear ordinary differential equations. Numerical simulations are carried out in Maple software to study the influence of incorporated non-dimensional parameters viz. disk movement parameter (−0.3 < S < 0.2), magnetic parameter (0.1 < M < 0.4), Eckert number (0.1 < Ec < 1), Schmidt number (0.1 < Sc < 1), Soret parameter (0.1 < Sr < 1) and Dufour number (0.1 < Du < 1) on velocity, temperature and concentration profiles.

Findings

The upward/downward motion of the disk along with rotation set up a three-dimensional flow over the disk surface and exerts the same effects as injection/suction through the wall. It is also observed that incorporated parameters along with disk movement greatly affect the flow regime and associated heat and mass transfer.

Originality/value

The present study examines the heat and mass transfer characteristics of incompressible Newtonian fluid over an impermeable rotating disk moving vertically. The effect of viscous dissipation and ohmic heating is considered. To the best of the authors’ knowledge, such consideration is yet to be published in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 October 2018

Satakshi Aggarwal and Tanu Jain

Modern thermal and non-thermal pretreatment techniques, namely, enzymatic treatment, gas phase plasma treatment and ohmic heating have become more pronounced over conventional…

Abstract

Purpose

Modern thermal and non-thermal pretreatment techniques, namely, enzymatic treatment, gas phase plasma treatment and ohmic heating have become more pronounced over conventional techniques for enhanced coloured phytochemicals (pigments) extraction. Presently, numbers of pretreatment techniques are available with some unique feature. It is difficult to choose best pretreatment method to be employed for phytochemicals extraction from different sources. Therefore, this paper aims to discuss different modern pretreatment techniques for extraction with their potential results over conventional techniques.

Design/methodology/approach

Research and review articles targeting to the thermal and non-thermal pretreatment techniques were collected from Google Scholar. The required information has been tabulated and discussed which included qualities of modern pretreatment techniques over conventional techniques, phytochemical extraction and best pretreatment methods for optimized results.

Findings

Every pre-treatment has its own advantages and disadvantages for a particular phytochemical and its extraction from various sources. Enzymes can be used in combinations to enhance final yield like extraction of carotenoids (pectinase, cellulase and hemicellulase) from chillies and lycopene (pectinase and cellulase) from tomato. Utilization of each method depends upon many factors such as source of pigment, cost and energy consumption. CO2 pretreatment gives good results for carotenoid extraction from algae sources. Ohmic heating can yield high anthocyanin content. Modifications in conventional blanching has reduced final waste and improvised the properties of pigment.

Originality/value

This study comprises collective information regarding modern pre-treatment for extraction over conventional pre-treatments. The study also covers future trends and certain new hybrid approaches which are still less flourished.

Details

Nutrition & Food Science, vol. 49 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 June 1993

Alan Williams

The exploitation of new technologies and effective technologytransfer are vital ingredients for the long‐term competitiveness of allorganizations. When referring to developments…

Abstract

The exploitation of new technologies and effective technology transfer are vital ingredients for the long‐term competitiveness of all organizations. When referring to developments in food technologies, the use of the term “new” will mainly be in the context of new to the user rather than new to science. Provides a brief overview of some of the recently established processes such as ohmic heating, microwave sterilization and novel methods to decontaminate herbs and spices, which are starting to have an impact on the food industry.

Details

Nutrition & Food Science, vol. 93 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 6 December 2020

S. Das, Akram Ali and R.N. Jana

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching…

Abstract

Purpose

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.

Design/methodology/approach

The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.

Findings

As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.

Practical implications

The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.

Originality/value

From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 September 2023

Shafia Rana, M. Nawaz and Sayer Obaid Alharbi

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant…

130

Abstract

Purpose

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant role in industrial and engineering applications. For this, the authors dispersed trihybrid nanoparticles into the fluid to enhance the working fluid’s thermal enhancement.

Design/methodology/approach

The finite element method is a numerical scheme and is powerful in achieving convergent and grid-independent solutions compared with other numerical techniques. This method was initially assigned to structural problems. However, it is equally successful for computational fluid dynamics problems.

Findings

Wall shear stress has shown an increasing behavior as the intensity of the magnetic field is increased. Simulations have predicted that Ohmic heat in the case of trihybrid nanofluid (MoS2–Al2O3–Cu/C2H6O2) has the greatest value in comparison with mono and hybrid nanofluids. The most significant influence of chemical reaction on the concentration in tri-nanofluid is noted. This observation is pointed out for both types of chemical reaction (destructive or generative) parameters.

Originality/value

Through a literature survey, the authors analyzed that no one has yet to work on a 3D magnetohydrodynamics Carreau–Yasuda trihybrid nanofluid over a stretched sheet for improving heat and mass transfer over hybrid nanofluids. Herein, molybdenum disulfide (MoS2), aluminum oxide (Al2O3) and copper (Cu) nanoparticles are mixed in ethylene glycol (C2H6O2) to study the thermal enhancement and mass transport of their corresponding resultant mono (Cu/C2H6O2), hybrid (Al2O3–Cu/C2H6O2) and trihybrid (MoS2–Al2O3–Cu/C2H6O2) nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2018

Don Liu, Hui-Li Han and Yong-Lai Zheng

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the…

Abstract

Purpose

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the full viscous dissipation function in the energy equation. Three benchmark problems were solved to validate the algorithm with exact or theoretical solutions. The heated rotating sphere at different temperatures inside a cold planar Poiseuille flow was simulated parametrically at varied angular velocities with positive and negative rotations.

Design/methodology/approach

The fourth-order stiffly stable schemes were implemented and tested for time integration. To provide the hp-refinement and spatial resolution enhancement, a modal spectral element method using hierarchical basis functions was used to solve governing equations in a three-dimensional space.

Findings

It was found that the direction of rotation of the heated sphere has totally different effects on drag, lateral force and torque evaluated on surfaces of the sphere and walls. It was further concluded that the angular velocity of the heated sphere has more influence on the wall normal velocity gradient than on the wall normal temperature gradients and therefore, more influence on the viscous dissipation than on the thermal dissipation.

Research limitations/implications

This paper concerns incompressible fluid flow at constant properties with up to medium temperature variations in the absence of thermal radiation and ignoring the pressure work.

Practical implications

This paper contributes a viable high-order algorithm in time and space for modeling convective heat transfer involving an internal heated rotating sphere with the effect of viscous heating.

Social implications

Results of this paper could provide reference for related topics such as enhanced heat transfer forced convection involving rotating spheres and viscous thermal effect.

Originality/value

The merits include resolving viscous dissipation and thermal diffusion in stationary and rotating boundary layers with both h- and p-type refinements, visualizing the viscous heating effect with the full viscous dissipation function in the energy equation and modeling the forced advection around a rotating sphere with varied positive and negative angular velocities subject to a shear flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 May 2021

S. Das, S. Chakraborty and R. N. Jana

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject…

Abstract

Purpose

This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation.

Design/methodology/approach

The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided.

Findings

The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times.

Practical implications

In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices.

Originality/value

An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 June 2011

Adriano Sciacovelli and Vittorio Verda

The aim of this paper is to investigate performance improvements of a monolithic solid oxide fuel cell geometry through an entropy generation analysis.

Abstract

Purpose

The aim of this paper is to investigate performance improvements of a monolithic solid oxide fuel cell geometry through an entropy generation analysis.

Design/methodology/approach

The analysis of entropy generation rates makes it possible to identify the phenomena that cause the main irreversibilities in the fuel cell, to understand their causes and to propose changes in the design and operation of the system. The various contributions to entropy generation are analyzed separately in order to identify which geometrical parameters should be considered as the independent variables in the optimization procedure. The local entropy generation rates are obtained through 3D numerical calculations, which account for the heat, mass, momentum, species and current transport. The system is then optimized in order to minimize the overall entropy generation and increase efficiency.

Findings

In the optimized geometry, the power density is increased by about 10 per cent compared to typical designs. In addition, a 20 per cent reduction in the fuel cell volume can be achieved with less than a 1 per cent reduction in the power density with respect to the optimal design.

Research limitations/implications

The physical model is based on a simple composition of the reactants, which also implies that no chemical reactions (water gas shift, methane steam reforming, etc.) take place in the fuel cell. Nevertheless, the entire procedure could be applied in the case of different gas compositions.

Practical implications

Entropy generation analysis allows one to identify the geometrical parameters that are expected to play important roles in the optimization process and thus to reduce the free independent variables that have to be considered. This information may also be used for design improvement purposes.

Originality/value

In this paper, entropy generation analysis is used for a multi‐physics problem that involves various irreversible terms, with the double use of this physical quantity: as a guide to select the most relevant design geometrical quantities to be modified and as objective function to be minimized in the optimization process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2022

Sanjay Kumar and Kushal Sharma

The present study aims to investigate the effect of radiation on the unsteady magnetohydrodynamic (MHD) flow of a viscous, electrically conducting Newtonian fluid over rotating…

Abstract

Purpose

The present study aims to investigate the effect of radiation on the unsteady magnetohydrodynamic (MHD) flow of a viscous, electrically conducting Newtonian fluid over rotating disk moving upward/downward immersed in a porous medium, considering the Hall effect. The study is motivated by the various applications in the context of solar power technology, electric power generation, Hall accelerators, MHDs generators and other industrial areas when the fluid flow is subjected to the previously mentioned effects such as MHD, Hall effect and thermal radiation.

Design/methodology/approach

Suitable similarity transformations are employed to reduce the governing nonlinear partial differential equations into the nonlinear ordinary ones. The solutions of the reduced system are numerically obtained using the boundary value problem (BVP) Midrich scheme in Maple. The results are presented graphically for vertical disk movement, magnetic parameter, Hall current, Darcy parameter, thermal radiation and Schmidt number. Skin frictions, mass and heat transfer rates are numerically tabulated.

Findings

It is revealed that the vertical motion of the disk significantly boosts the radial and annular flows. Moreover, the Hall parameter has contrasting effects on velocity profiles for the range of magnetic field but temperature field is oblivious of this behavior. It is observed that heat and mass transfer considerably enhance along vertical disk movement. Also magnetic field, temperature ratio and radiation parameter significantly enhance the temperature field, while reaction rate parameter and Schmidt number decrease the concentration profile. The current model is calibrated in its reduced form to an already published literature with good correlation to ensure the numerical scheme's validity.

Originality/value

This work is original within the best efforts of the authors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 339