Search results

1 – 3 of 3
Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 15 February 2024

Mercy T. Musakwa

In this study, the impact of access to electricity on poverty reduction for Botswana is examined using the annual data from 1990 to 2021. The study was motivated by the need to…

Abstract

Purpose

In this study, the impact of access to electricity on poverty reduction for Botswana is examined using the annual data from 1990 to 2021. The study was motivated by the need to establish if access to electricity could be a panacea on poverty reduction in Botswana. Given that the United Nations Sustainable Development Goals deadline is fast approaching, and Botswana being one of the signatories, is expected to end poverty in all its forms – Goal 1. Establishing the role that electrification plays in poverty alleviation, helps in refocusing Botswana’s poverty alleviation strategies on factors that have high impact on poverty. The main objective of this study, therefore, is to investigate the relationship between poverty alleviation and access to electricity in Botswana.

Design/methodology/approach

The study uses the autoregressive distributed lag (ARDL) approach to investigate the nature of the relations. Two poverty proxies were used in this study namely, household consumption expenditure and life expectancy.

Findings

The study found access to electricity to reduce poverty in the long run and in the short run, regardless of the poverty measure used. Thus, access to electricity plays an important role in poverty alleviation and Botswana is recommended to continue with the rural and urban electrification initiatives.

Originality/value

The study explores the impact of access to electricity on poverty reduction in Botswana, a departure from the current studies that examined the same relationship using energy consumption in general. This is on the back of increasing dependence of economic activities on electricity as a major source of energy.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 3 of 3