Search results

1 – 10 of 12
Article
Publication date: 30 September 2019

Bin Li, Jianzhong Fu, Yongjie Jessica Zhang, Weiyi Lin, Jiawei Feng and Ce Shang

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information…

Abstract

Purpose

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information. Whereas, heterogeneous solids are highly preferable for designing and manufacturing sophisticated models. To directly slice heterogeneous solids for additive manufacturing (AM), this study aims to present an algorithm using octree-based subdivision and trivariate T-splines.

Design/methodology/approach

This paper presents a direct slicing algorithm for heterogeneous solids using T-splines, which can be applied to AM based on the fused deposition modeling (FDM) technology. First, trivariate T-splines are constructed using a harmonic field with the gradient direction aligning with the slicing direction. An octree-based subdivision algorithm is then used to directly generate the sliced layers with heterogeneous materials. For FDM-based AM applications, the heterogeneous materials of each sliced layer are discretized into a finite number of partitions. Finally, boundary contours of each separated partition are extracted and paired according to the rules of CuraEngine to generate the scan path for FDM machines equipped with multi-nozzles.

Findings

The experimental results demonstrate that the proposed algorithm is effective and reliable, especially for solid objects with multiple materials, which could maintain the model integrity throughout the process from the original representation to the final product in AM.

Originality/value

Directly slicing heterogeneous solid using trivariate T-splines will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing…

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2020

Jianming Zhang, Chuanming Ju and Baotao Chi

The purpose of this paper is to present a fast algorithm for the adaptive discretization of three-dimensional parametric curves.

Abstract

Purpose

The purpose of this paper is to present a fast algorithm for the adaptive discretization of three-dimensional parametric curves.

Design/methodology/approach

The proposed algorithm computes the parametric increments of all segments to obtain the parametric coordinates of all discrete nodes. This process is recursively applied until the optimal discretization of curves is obtained. The parametric increment of a segment is inversely proportional to the number of sub-segments, which can be subdivided, and the sum of parametric increments of all segments is constant. Thus, a new expression for parametric increment of a segment can be obtained. In addition, the number of sub-segments, which a segment can be subdivided is calculated approximately, thus avoiding Gaussian integration.

Findings

The proposed method can use less CPU time to perform the optimal discretization of three-dimensional curves. The results of curves discretization can also meet requirements for mesh generation used in the preprocessing of numerical simulation.

Originality/value

Several numerical examples presented have verified the robustness and efficiency of the proposed algorithm. Compared with the conventional algorithm, the more complex the model, the more time the algorithm saves in the process of curve discretization.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 January 2024

Juelin Leng, Quan Xu, Tiantian Liu, Yang Yang and Peng Zheng

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Abstract

Purpose

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Design/methodology/approach

In this paper, the authors present an automatic approach for mesh sizing field generation. First, a source point extraction algorithm is applied to capture curvature and proximity features of CAD models. Second, according to the distribution of feature source points, an octree background mesh is constructed for storing element size value. Third, mesh size value on each node of background mesh is calculated by interpolating the local feature size of the nearby source points, and then, an initial mesh sizing field is obtained. Finally, a theoretically guaranteed smoothing algorithm is developed to restrict the gradient of the mesh sizing field.

Findings

To achieve high performance, the proposed approach has been implemented in multithreaded parallel using OpenMP. Numerical results demonstrate that the proposed approach is remarkably efficient to construct reasonable mesh sizing field for complicated CAD models and applicable for generating geometrically adaptive triangle/tetrahedral meshes. Moreover, since the mesh sizing field is defined on an octree background mesh, high-efficiency query of local size value could be achieved in the following mesh generation procedure.

Originality/value

How to determine a reasonable mesh size for complicated CAD models is often a bottleneck of mesh generation. For the complicated models with thousands or even ten thousands of geometric entities, it is time-consuming to construct an appropriate mesh sizing field for generating high-quality mesh. A parallel algorithm of mesh sizing field generation with low computational complexity is presented in this paper, and its usability and efficiency have been verified.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2013

Charlie C.L. Wang and Yong Chen

Given an intersection-free mesh surface S, the paper introduces a method to thicken S into a solid H located at one side of S. By such a surface-to-solid conversion operation…

1092

Abstract

Purpose

Given an intersection-free mesh surface S, the paper introduces a method to thicken S into a solid H located at one side of S. By such a surface-to-solid conversion operation, industrial users are able to fabricate a designed (or reconstructed) surface by rapid prototyping.

Design/methodology/approach

The paper first investigates an implicit representation of the thickened solid H according to an extension of signed distance function. After that, a partial surface reconstruction algorithm is proposed to generate the boundary surface of H, which retains the given surface S on the resultant surface.

Findings

Experimental tests show that the thickening results generated by the method give nearly uniform thickness and meanwhile do not present shape approximation error at the region of input surface S. These two good properties are important to the industrial applications of solid fabrication.

Research limitations/implications

The input polygonal model is assumed to be intersection-free, where models containing self-intersection will lead to invalid thickening results.

Originality/value

A novel robust operation is to convert a freeform open surface into a solid by introducing no shape approximation error. A new implicit function gives a compact mathematical representation, which can easily handle the topological change on the thickened solids. A new polygonization algorithm generates faces for the boundary of thickened solid meanwhile retaining faces on the input open mesh.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2005

André Buchau, Wolfgang Hafla, Friedemann Groh and Wolfgang M. Rucker

Various parallelization strategies are investigated to mainly reduce the computational costs in the context of boundary element methods and a compressed system matrix.

Abstract

Purpose

Various parallelization strategies are investigated to mainly reduce the computational costs in the context of boundary element methods and a compressed system matrix.

Design/methodology/approach

Electrostatic field problems are solved numerically by an indirect boundary element method. The fully dense system matrix is compressed by an application of the fast multipole method. Various parallelization techniques such as vectorization, multiple threads, and multiple processes are applied to reduce the computational costs.

Findings

It is shown that in total a good speedup is achieved by a parallelization approach which is relatively easy to implement. Furthermore, a detailed discussion on the influence of problem oriented meshes to the different parts of the method is presented. On the one hand the application of problem oriented meshes leads to relatively small linear systems of equations along with a high accuracy of the solution, but on the other hand the efficiency of parallelization itself is diminished.

Research limitations/implications

The presented parallelization approach has been tested on a small PC cluster only. Additionally, the main focus has been laid on a reduction of computing time.

Practical implications

Typical properties of general static field problems are comprised in the investigated numerical example. Hence, the results and conclusions are rather general.

Originality/value

Implementation details of a parallelization of existing fast and efficient boundary element method solvers are discussed. The presented approach is relatively easy to implement and takes special properties of fast methods in combination with parallelization into account.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 January 2020

Matteo Perini, Paolo Bosetti and Nicolae Balc

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual…

343

Abstract

Purpose

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual labor. The main purpose of the hybrid repair process is to restore the original shape of the mechanical parts, by adding and removing material according to the mismatch between the damaged object and the virtual model, to restore its geometrical properties.

Design/methodology/approach

The DUOADD software tool translates the information collected from a 3D scanner into a digital computer aided design solid model, which can be manipulated through Siemens NX computer aided manufacturing (CAM), to obtain the tool paths, for the Direct Laser Deposition (DLD) technology. DUOADD uses octrees to effectively analyze the damaged region of the mechanical part and then to discretize the volume to be added to export CAM-compatible information as a 3D model, for additive operations.

Findings

DUOADD is the missing link between two valuable existing technologies, 3D scan and CAM for additive manufacturing, which can now be connected together, to perform automatic repairing.

Research limitations/implications

A trade-off between resolution and computational effort needs to be achieved.

Practical implications

DUOADD output is a STEP file, transferred to the CAM software to create the additive and the milling tool paths. The maximum deviation was 40 micrometers, as compared with the original solid model.

Originality/value

The paper presents a new procedure and new software tools (DUOADD), for the automation of damaged objects restoration process. DUOADD software provides suitable data for using a 5-axis computer numerical control (CNC) milling machine equipped with a DLD tool.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 June 2021

Zhiwei Liu, Jianjun Chen, Yifan Xia and Yao Zheng

Sizing functions are crucial inputs for unstructured mesh generation since they determine the element distributions of resulting meshes to a large extent. Meanwhile, automating…

Abstract

Purpose

Sizing functions are crucial inputs for unstructured mesh generation since they determine the element distributions of resulting meshes to a large extent. Meanwhile, automating the procedure of creating a sizing function is a prerequisite to set up a fully automatic mesh generation pipeline. In this paper, an automatic algorithm is proposed to create a high-quality sizing function for an unstructured surface and volume mesh generation by using a triangular mesh as the background mesh.

Design/methodology/approach

A practically efficient and effective solution is developed by using local operators carefully to re-mesh the tessellation of the input Computer Aided Design (CAD) models. A nonlinear programming (NLP) problem has been formulated to limit the gradient of the sizing function, while in this study, the object function of this NLP is replaced by an analytical equation that predicts the number of elements. For the query of the sizing value, an improved algorithm is developed by using the axis-aligned bounding box (AABB) tree structure.

Findings

The local operations of re-meshing could effectively and efficiently resolve the banding issue caused by using the default tessellation of the model to define a sizing function. Experiments show that the solution of the revised NLP, in most cases, could provide a better solution at the lower cost of computational time. With the help of the AABB tree, the sizing function defined at a surface background mesh can be also used as the input of volume mesh generation.

Originality/value

Theoretical analysis reveals that the construction of the initial sizing function could be reduced to the solution of an optimization problem. The definitions of the banding elements and surface proximity are also given. Under the guidance of this theoretical analysis, re-meshing and ray-casting technologies are well-designed to initial the sizing function. Smoothing with the revised NLP and querying by the AABB tree, the paper provides an automatic method to get a high-quality sizing function for both surface and volume mesh generation.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 2004

H. Medellín, J. Corney, J.B.C. Davies, T. Lim and J.M. Ritchie

This paper presents a novel approach for rapid prototyping based on the octree decomposition of 3D geometric models. The proposed method, referred as OcBlox, integrates an octree…

1398

Abstract

This paper presents a novel approach for rapid prototyping based on the octree decomposition of 3D geometric models. The proposed method, referred as OcBlox, integrates an octree modeller, an assembly planning system, and a robotic assembly cell into an integrated system that builds approximate prototypes directly from 3D model data. Given an exact 3D model this system generates an octree decomposition of it, which approximates the shape cubic units referred as “Blox”. These cuboid units are automatically assembled to obtain an approximate physical prototype. This paper details the algorithms used to generate the octree's assembly sequence and demonstrates the feasibility of the OcBlox approach by describing a single resolution example of a prototype built with this automated system. An analysis of the potential of the approach to decrease the manufacturing time of physical components is detailed. Finally, the potential of OcBlox to support complex overhanging geometry is discussed.

Details

Assembly Automation, vol. 24 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 12