Search results

1 – 10 of over 17000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

José I.V. Sena, Cedric Lequesne, L Duchene, Anne-Marie Habraken, Robertt A.F. Valente and Ricardo J Alves de Sousa

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between…

Abstract

Purpose

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced.

Design/methodology/approach

SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years.

Findings

In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results.

Originality/value

It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2018

Hongxing Jia, Shizhu Tian, Shuangjiang Li, Weiyi Wu and Xinjiang Cai

Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to…

Abstract

Purpose

Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to improve the analysis accuracy of the numerical substructure in hybrid simulation, the purpose of this paper is to propose an innovative hybrid simulation technique. The technique combines the multi-scale finite element (MFE) analysis method and hybrid simulation method with the objective of achieving the balance between the accuracy and efficiency for the numerical substructure simulation.

Design/methodology/approach

To achieve this goal, a hybrid simulation system is established based on the MTS servo control system to develop a hybrid analysis model using an MFE model. Moreover, in order to verify the efficiency of the technique, the hybrid simulation of a three-storey benchmark structure is conducted. In this simulation, a ductile column—represented by a half-scale scale specimen—is selected as the experimental element, meanwhile the rest of the frame is modelled as microscopic and macroscopic elements in the Abaqus software simultaneously. Finally, to demonstrate the stability and accuracy of the proposed technique, the seismic response of the target structure obtained via hybrid simulation using the MFE model is compared with that of the numerical simulation.

Findings

First, the use of the hybrid simulation with the MFE model yields results similar to those obtained by the fine finite element (FE) model using solid elements without adding excessive computing burden, thus advancing the application of the hybrid simulation in large complex structures. Moreover, the proposed hybrid simulation is found to be more versatile in structural seismic analysis than other techniques. Second, the hybrid simulation system developed in this paper can perform hybrid simulation with the MFE model as well as handle the integration and coupling of the experimental elements with the numerical substructure, which consists of the macro- and micro-level elements. Third, conducting the hybrid simulation by applying earthquake motion to simulate seismic structural behaviour is feasible by using Abaqus to model the numerical substructure and harmonise the boundary connections between three different scale elements.

Research limitations/implications

In terms of the implementation of the hybrid simulation with the MFE model, this work is helpful to advance the hybrid simulation method in the structural experiment field. Nevertheless, there is still a need to refine and enhance the current technique, especially when the hybrid simulation is used in real complex engineering structures, having numerous micro-level elements. A large number of these elements may render the relevant hybrid simulations unattainable because the time consumed in the numeral calculations can become excessive, making the testing of the loading system almost difficult to run smoothly.

Practical implications

The MFE model is implemented in hybrid simulation, enabling to overcome the problems related to the testing accuracy caused by the numerical substructure simplifications using only macro-level elements.

Originality/value

This paper is the first to recognise the advantage of the MFE analysis method in hybrid simulation and propose an innovative hybrid simulation technique, combining the MFE analysis method with hybrid simulation method to strike a delicate balance between the accuracy and efficiency of the numerical substructure simulation in hybrid simulation. With the help of the coordinated analysis of FEs at different scales, not only the accuracy and reliability of the overall seismic analysis of the structure is improved, but the computational cost can be restrained to ensure the efficiency of hybrid simulation.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 January 2008

M. Schöning and K. Hameyer

To reduce the computational costs for electromagnetic simulations of permanent magnet synchronous machines maintaining a high accuracy.

Abstract

Purpose

To reduce the computational costs for electromagnetic simulations of permanent magnet synchronous machines maintaining a high accuracy.

Design/methodology/approach

An analytical model is introduced regarding multiple designs of permanent magnet synchronous machines. This electromagnetic model is coupled to a numerical simulation. Thereby, the advantages of both computational methods are combined by parameterizing the analytical model to the numerical solution. This results in a high‐efficient analytical model with the accuracy of the numerical simulation. The results of the analytical model are compared to measurements of a permanent magnet synchronous machine. Various machine modifications are simulated to evaluate possible limitations of the analytical model.

Findings

It can be stated, that a once parameterized analytical model achieves a high accuracy. Furthermore, geometric variations can be applied without the need of a new parameterization through a numerical simulation. Only changing the permanent magnet height or the air gap height results in a significant deviation and a new numerical simulation is recommended.

Research limitations/implications

Only measurements for machines up to 5 kW were available. In consequence, the model is only validatet in this range.

Practical implications

With the presented analytical model, an electromagnetic design of a permanent magnet synchronous machine can be performed very time efficient achieving accurate results. Furthermore, optimization studies can be performed with low‐computational costs.

Originality/value

The introduced analytical model can be parameterized by a numerical simulation. The numeric simulation process and the parameterization are performed automatically according to the data calculated by the analytical model. Measurements demonstrate the effectiveness and the limitations of the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Seyi F. Olatoyinbo, Sarma L. Rani and Abdelkader Frendi

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic…

Abstract

Purpose

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic turbulence.

Design/methodology/approach

In an earlier paper, the FDV method was successfully demonstrated for simulations of laminar flows with speeds varying from low subsonic to high supersonic Mach numbers. In the current study, the FDV method, implemented in a finite element framework, is used to perform LESs of decaying isotropic turbulence. The FDV method is fundamentally derived from the Lax–Wendroff Scheme (LWS) by replacing the explicit time derivatives in LWS with a weighted combination of explicit and implicit time derivatives. The increased implicitness and the inherent numerical dissipation of FDV contribute to the scheme’s numerical stability and monotonicity. Understanding the role of numerical dissipation that is inherent to the FDV method is essential for the maturation of FDV into a robust scheme for LES of turbulent flows. Accordingly, three types of LES of decaying isotropic turbulence were performed. The first two types of LES utilized explicit subgrid scale (SGS) models, namely, the constant-coefficient Smagorinsky and dynamic Smagorinsky models. In the third, no explicit SGS model was employed; instead, the numerical dissipation inherent to FDV was used to emulate the role played by explicit SGS models. Such an approach is commonly known as Implicit LES (ILES). A new formulation was also developed for quantifying the FDV numerical viscosity that principally arises from the convective terms of the filtered Navier–Stokes equations.

Findings

The temporal variation of the turbulent kinetic energy and enstrophy and the energy spectra are presented and analyzed. At all grid resolutions, the temporal profiles of kinetic energy showed good agreement with t(−1.43) theoretical scaling in the fully developed turbulent flow regime, where t represents time. The energy spectra also showed reasonable agreement with the Kolmogorov’s k(−5/3) power law in the inertial subrange, with the spectra moving closer to the Kolmogorov scaling at higher-grid resolutions. The intrinsic numerical viscosity and the dissipation rate of the FDV scheme are quantified, both in physical and spectral spaces, and compared with those of the two SGS LES runs. Furthermore, at a finite number of flow realizations, the numerical viscosities of FDV and of the Streamline Upwind/Petrov–Galerkin (SUPG) finite element method are compared. In the initial stages of turbulence development, all three LES cases have similar viscosities. But, once the turbulence is fully developed, implicit LES is less dissipative compared to the two SGS LES runs. It was also observed that the SUPG method is significantly more dissipative than the three LES approaches.

Research limitations/implications

Just as any computational method, the limitations are based on the available computational resources.

Practical implications

Solving problems involving turbulent flows is by far the biggest challenge facing engineers and scientists in the twenty-first century, this is the road that the authors have embarked upon in this paper and the road ahead of is very long.

Social implications

Understanding turbulence is a very lofty goal and a challenging one as well; however, if the authors succeed, the rewards are limitless.

Originality/value

The derivation of an explicit expression for the numerical viscosity tensor of FDV is an important contribution of this study, and is a crucial step forward in elucidating the fundamental properties of the FDV method. The comparison of viscosities for the three LES cases and the SUPG method has important implications for the application of ILES approach for turbulent flow simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2020

Mohammad Ali Taghikhani and Zahra Taghikhani

Using appropriate solution techniques for transformer inrush current transient study is of great prominence owing to the inevitable inclusion of differential equations leading to…

Abstract

Purpose

Using appropriate solution techniques for transformer inrush current transient study is of great prominence owing to the inevitable inclusion of differential equations leading to complicated analysis procedures. This study aims to propose an analytical-numerical method to accurately analyze the three-phase three-limb core-type transformer inrush current in different cases considering the nonlinear behavior of the iron core.

Design/methodology/approach

The proposed method focuses on acquiring equations for inrush current and also the magnetic core flux by the application of a simulation-based iterative approach. In this regard, multiple integral equations are solved taking the time intervals into account. Then several derivations and integrations of matrix terms are substituted into the obtained results so as to simplify the solution process.

Findings

The method provides notable enhancements in computation time and also excellent qualities of accuracy compared with conventional numerical methods.

Practical implications

The proposed method is simulated for two three-phase transformers via MATLAB software. The obtained simulation results have been also compared with experimental tests.

Originality/value

Actually, the analytical-numerical method is capable of computing higher number of iterations in a shorter time efficiently, while making use of the conventional numerical procedures may not result in expected convergences. The simulation results of the proposed analytical-numerical technique illustrate a close agreement with the experimental test, and hence, verify the method preciousness.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 April 2011

J.I.V. Sena, R.J. Alves de Sousa and R.A.F. Valente

Incremental sheet forming represents a promising process in the manufacturing of metallic components, particularly its variant known as single point incremental forming (SPIF)…

Abstract

Purpose

Incremental sheet forming represents a promising process in the manufacturing of metallic components, particularly its variant known as single point incremental forming (SPIF). The purpose of this paper is to test and validate the results coming from numerical simulation of SPIF processes using the reduced enhanced solid‐shell formulation, when compared to the solid finite elements available in ABAQUS software. The use of SPIF techniques in the production of small batch components has a potential wide application in fields such as rapid prototyping and biomechanical devices.

Design/methodology/approach

Incremental forming processes differ from conventional stamping by not using a press and by requiring a lower number of tools, since no dedicated punches and dies are necessary, which lowers the overall production costs. In addition, it shows relative simplicity and flexible setup for complex parts, when compared with conventional technologies. However, the low speed of production and low‐dimensional accuracy levels are still the main obstacles for a wider application of this technique in the context of large production batches.

Findings

In this sense, the use of numerical simulation tools based on the finite element method (FEM) can provide a better understanding of the process' peculiarities. However, there are differences on using distinct finite element formulations, regarding accuracy as well as CPU times during simulations, which can be prohibitive in some cases.

Originality/value

Aiming to provide sounding improvements in these two fields (robustness and cost effectiveness of FEM solutions), the present work encloses a preliminary study about some relevant parameters in the FEM simulation of SPIF. Special focus is given to the use of solid‐shell and solid finite elements, for the sake of generality in modelling, as well as implicit solution schemes for the sake of accuracy. Finally, results coming from both experimental data and commercial FEM packages are compared to those obtained by a reliable and cost‐effective solid‐shell finite element formulation developed and implemented by the authors.

Details

Engineering Computations, vol. 28 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2006

Chongbin Zhao, T. Nishiyama and A. Murakami

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to…

Abstract

Purpose

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to compare the particle simulation results with experimental ones on the laboratory scale.

Design/methodology/approach

Using the particle simulation method, the brittle material is simulated as an assembly of particles so that the microscopic mechanism of inter‐ and intra‐particle crack initiation can be straightforwardly considered on the microscopic scale. A laboratory test has been conducted using a gypsum sample model to validate the particle simulation method for explicitly simulating the spontaneous crack initiation phenomenon.

Findings

The paper finds that in terms of simulating the macroscopic sliding surface along or around the contact plane between a block and its foundation, both the laboratory test and the particle simulation have produced consistent results. This indicated that the particle simulation method is capable of simulating macroscopic cracks through simulating conglomerations and accumulations of microscopic crack initiation within the brittle material. Compared with other numerical methods, the particle simulation method is more suitable for explicitly and effectively simulating spontaneous crack initiation problems on the microscopic scale in brittle materials.

Originality/value

The particle simulation method can be used to explicitly and effectively simulate the spontaneous crack initiation on the microscopic scale in brittle materials. It can be also used to simulate the macroscopic sliding surface along or around the contact plane between a block and its foundation. The experimental results of simulating the spontaneous crack initiation on the laboratory scale in brittle materials are very valuable for validating the numerical simulation results obtained not only from the particle simulation method, but also from other numerical simulation methods.

Details

Engineering Computations, vol. 23 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

Farhang Behrangi, Mohammad Ali Banihashemi, Masoud Montazeri Namin and Asghar Bohluly

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Abstract

Purpose

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Design/methodology/approach

The multiphase mixture model contains a set of momentum and continuity equations for the mixture phase, a second phase continuity equation and the algebraic equation for the relative velocity. For solving continuity equation for the second phase and advection term of momentum, an improved approach fine grid advection-multiphase mixture flow (FGA-MMF) is developed. In the FGA-MMF method, the continuity equation for the second phase is solved with higher-order schemes in a two times finer grid. To solve the advection term of the momentum equation, the advection fluxes of the volume fraction in the continuity equation for the second phase are used.

Findings

This approach has been used in various tests to simulate unsteady flow problems. Comparison between numerical results and experimental data demonstrates a satisfactory performance. Numerical examples show that this approach increases the accuracy and stability of the solution and decreases non-monotonic results.

Research limitations/implications

The solver for the multi-phase mixture model can only be adopted to solve the incompressible fluid flow.

Originality/value

The paper developed an innovative solution (FGA-MMF) to find multi-phase flow field value in the multi-phase mixture model. Advantages of the FGA-MMF technique are the ability to accurately determine the phases interpenetrating, decreasing the numerical diffusion of the interface and preventing instability and non-monotonicity in solution of large density variation problems.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 17000