Search results

1 – 10 of 33
Open Access
Article
Publication date: 13 March 2024

Tjaša Redek and Uroš Godnov

The Internet has changed consumer decision-making and influenced business behaviour. User-generated product information is abundant and readily available. This paper argues that…

Abstract

Purpose

The Internet has changed consumer decision-making and influenced business behaviour. User-generated product information is abundant and readily available. This paper argues that user-generated content can be efficiently utilised for business intelligence using data science and develops an approach to demonstrate the methods and benefits of the different techniques.

Design/methodology/approach

Using Python Selenium, Beautiful Soup and various text mining approaches in R to access, retrieve and analyse user-generated content, we argue that (1) companies can extract information about the product attributes that matter most to consumers and (2) user-generated reviews enable the use of text mining results in combination with other demographic and statistical information (e.g. ratings) as an efficient input for competitive analysis.

Findings

The paper shows that combining different types of data (textual and numerical data) and applying and combining different methods can provide organisations with important business information and improve business performance.

Research limitations/implications

The paper shows that combining different types of data (textual and numerical data) and applying and combining different methods can provide organisations with important business information and improve business performance.

Originality/value

The study makes several contributions to the marketing and management literature, mainly by illustrating the methodological advantages of text mining and accompanying statistical analysis, the different types of distilled information and their use in decision-making.

Details

Kybernetes, vol. 53 no. 13
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 31 July 2023

Daniel Šandor and Marina Bagić Babac

Sarcasm is a linguistic expression that usually carries the opposite meaning of what is being said by words, thus making it difficult for machines to discover the actual meaning…

2928

Abstract

Purpose

Sarcasm is a linguistic expression that usually carries the opposite meaning of what is being said by words, thus making it difficult for machines to discover the actual meaning. It is mainly distinguished by the inflection with which it is spoken, with an undercurrent of irony, and is largely dependent on context, which makes it a difficult task for computational analysis. Moreover, sarcasm expresses negative sentiments using positive words, allowing it to easily confuse sentiment analysis models. This paper aims to demonstrate the task of sarcasm detection using the approach of machine and deep learning.

Design/methodology/approach

For the purpose of sarcasm detection, machine and deep learning models were used on a data set consisting of 1.3 million social media comments, including both sarcastic and non-sarcastic comments. The data set was pre-processed using natural language processing methods, and additional features were extracted and analysed. Several machine learning models, including logistic regression, ridge regression, linear support vector and support vector machines, along with two deep learning models based on bidirectional long short-term memory and one bidirectional encoder representations from transformers (BERT)-based model, were implemented, evaluated and compared.

Findings

The performance of machine and deep learning models was compared in the task of sarcasm detection, and possible ways of improvement were discussed. Deep learning models showed more promise, performance-wise, for this type of task. Specifically, a state-of-the-art model in natural language processing, namely, BERT-based model, outperformed other machine and deep learning models.

Originality/value

This study compared the performance of the various machine and deep learning models in the task of sarcasm detection using the data set of 1.3 million comments from social media.

Details

Information Discovery and Delivery, vol. 52 no. 2
Type: Research Article
ISSN: 2398-6247

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2024

Melike Artar, Yavuz Selim Balcioglu and Oya Erdil

Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of…

Abstract

Purpose

Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of focusing solely on obvious factors, such as qualifications and experience, our model also considers various dimensions of fit, including person-job fit and person-organization fit. By integrating these dimensions of fit into the model, we can better predict a candidate’s potential contribution to the organization, hence enhancing the Quality of Hire.

Design/methodology/approach

Within the scope of the investigation, the competencies of the personnel working in the IT department of one in the largest state banks of the country were used. The entire data collection includes information on 1,850 individual employees as well as 13 different characteristics. For analysis, Python’s “keras” and “seaborn” modules were used. The Gower coefficient was used to determine the distance between different records.

Findings

The K-NN method resulted in the formation of five clusters, represented as a scatter plot. The axis illustrates the cohesion that exists between things (employees) that are similar to one another and the separateness that exists between things that have their own individual identities. This shows that the clustering process is effective in improving both the degree of similarity within each cluster and the degree of dissimilarity between clusters.

Research limitations/implications

Employee competencies were evaluated within the scope of the investigation. Additionally, other criteria requested from the employee were not included in the application.

Originality/value

This study will be beneficial for academics, professionals, and researchers in their attempts to overcome the ongoing obstacles and challenges related to the securing the proper talent for an organization. In addition to creating a mechanism to use big data in the form of structured and unstructured data from multiple sources and deriving insights using ML algorithms, it contributes to the debates on the quality of hire in an entire organization. This is done in addition to developing a mechanism for using big data in the form of structured and unstructured data from multiple sources.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 April 2024

Xiaotong Huang, Wentao Zhan, Chaowei Li, Tao Ma and Tao Hong

Green innovation in supply chains is crucial for socioeconomic development and stability. Factors that influence collaborative green innovation in the supply chain are complex and…

Abstract

Purpose

Green innovation in supply chains is crucial for socioeconomic development and stability. Factors that influence collaborative green innovation in the supply chain are complex and diverse. Exploring the main influencing factors and their mechanisms is essential for promoting collaborative green innovation in supply chains. Therefore, this study analyzes how upstream and downstream enterprises in the supply chain collaborate to develop green technological innovations, thereby providing a theoretical basis for improving the overall efficiency of the supply chain and advancing green innovation technology.

Design/methodology/approach

Based on evolutionary game theory, this study divides operational scenarios into pure market and government-regulated operations, thereby constructing collaborative green innovation relationships in different scenarios. Through evolutionary analysis of various entities in different operational scenarios, combined with numerical simulation analysis, we compared the evolutionary stability of collaborative green innovation behavior in supply chains with and without government regulation.

Findings

Under pure market mechanisms, the higher the green innovation capability, the stronger the willingness of various entities to collaborate in green innovation. However, under government regulation, a decrease in green innovation capability increases the willingness to collaborate with various entities. Environmental tax rates and green subsidy levels promote collaborative innovation in the short term but inhibit collaborative innovation in the long term, indicating that policy orientation has a short-term impact. Additionally, the greater the penalty for collaborative innovation breaches, the stronger the intention to engage in collaborative green innovation in the supply chain.

Originality/value

We introduce the factors influencing green innovation capability and social benefits in the study of the innovation behavior of upstream and downstream enterprises, expanding the research field of collaborative innovation in the supply chain. By comparing the collaborative innovation behavior of various entities in the supply chain under a pure market scenario and government regulations, this study provides a new perspective for analyzing the impact of corresponding government policies on the green innovation capability of upstream and downstream enterprises, enriching theoretical research on green innovation in the supply chain to some extent.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 19 December 2023

Marcin Nowak, Marta Pawłowska-Nowak, Małgorzata Kokocińska and Piotr Kułyk

With the use of the grey incidence analysis (GIA), indicators such as the absolute degree of grey incidence (εij), relative degree of grey incidence (rij) or synthetic degree of…

256

Abstract

Purpose

With the use of the grey incidence analysis (GIA), indicators such as the absolute degree of grey incidence (εij), relative degree of grey incidence (rij) or synthetic degree of grey incidence (ρij) are calculated. However, it seems that some assumptions made to calculate them are arguable, which may also have a material impact on the reliability of test results. In this paper, the authors analyse one of the indicators of the GIA, namely the relative degree of grey incidence. The aim of the article was to verify the hypothesis: in determining the relative degree of grey incidence, the method of standardisation of elements in a series significantly affects the test results.

Design/methodology/approach

To achieve the purpose of the article, the authors used the numerical simulation method and the logical analysis method (in order to draw conclusions from our tests).

Findings

It turned out that the applied method of standardising elements in series when calculating the relative degree of grey incidence significantly affects the test results. Moreover, the manner of standardisation used in the original method (which involves dividing all elements by the first element) is not the best. Much more reliable results are obtained by a standardisation that involves dividing all elements by their arithmetic mean.

Research limitations/implications

Limitations of the conducted evaluation involve in particular the limited scope of inference. This is since the obtained results referred to only one of the indicators classified into the GIA.

Originality/value

In this article, the authors have evaluated the model of GIA in which the relative degree of grey incidence is determined. As a result of the research, the authors have proposed a recommendation regarding a change in the method of standardising variables, which will contribute to obtaining more reliable results in relational tests using the grey system theory.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 May 2022

Ismail Abiodun Sulaimon, Hafiz Alaka, Razak Olu-Ajayi, Mubashir Ahmad, Saheed Ajayi and Abdul Hye

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully…

260

Abstract

Purpose

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully investigated. This paper aims to investigate the effects traffic data set have on the performance of machine learning (ML) predictive models in AQ prediction.

Design/methodology/approach

To achieve this, the authors have set up an experiment with the control data set having only the AQ data set and meteorological (Met) data set, while the experimental data set is made up of the AQ data set, Met data set and traffic data set. Several ML models (such as extra trees regressor, eXtreme gradient boosting regressor, random forest regressor, K-neighbors regressor and two others) were trained, tested and compared on these individual combinations of data sets to predict the volume of PM2.5, PM10, NO2 and O3 in the atmosphere at various times of the day.

Findings

The result obtained showed that various ML algorithms react differently to the traffic data set despite generally contributing to the performance improvement of all the ML algorithms considered in this study by at least 20% and an error reduction of at least 18.97%.

Research limitations/implications

This research is limited in terms of the study area, and the result cannot be generalized outside of the UK as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature are considered in this research, therefore, leaving out a few other ML algorithms.

Practical implications

This study reinforces the belief that the traffic data set has a significant effect on improving the performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms behave differently when trained with a form of traffic data set in the development of an AQ prediction model. This implies that developers and researchers in AQ prediction need to identify the ML algorithms that behave in their best interest before implementation.

Originality/value

The result of this study will enable researchers to focus more on algorithms of benefit when using traffic data sets in AQ prediction.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 33