Search results

1 – 10 of over 5000
Article
Publication date: 21 May 2021

M.J. Huntul, Mohammad Tamsir and Abdullah Ahmadini

The paper aims to numerically solve the inverse problem of determining the time-dependent potential coefficient along with the temperature in a higher-order Boussinesq-Love…

Abstract

Purpose

The paper aims to numerically solve the inverse problem of determining the time-dependent potential coefficient along with the temperature in a higher-order Boussinesq-Love equation (BLE) with initial and Neumann boundary conditions supplemented by boundary data, for the first time.

Design/methodology/approach

From the literature, the authors already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data. For the numerical realization, the authors apply the generalized finite difference method (GFDM) for solving the BLE along with the Tikhonov regularization to find stable and accurate numerical solutions. The regularized nonlinear minimization is performed using the MATLAB subroutine lsqnonlin. The stability analysis of solution of the BLE is proved using the von Neumann method.

Findings

The present numerical results demonstrate that obtained solutions are stable and accurate.

Practical implications

Since noisy data are inverted, the study models real situations in which practical measurements are inherently contaminated with noise.

Originality/value

The knowledge of this physical property coefficient is very important in various areas of human activity such as seismology, mineral exploration, biology, medicine, quality control of industrial products, etc. The originality lies in the insight gained by performing the numerical simulations of inversion to find the potential co-efficient on time in the BLE from noisy measurement.

Article
Publication date: 19 June 2019

Seyed Hamid Delbari, Amir Nejat, Mohammad H. Ahmadi, Ali Khaleghi and Marjan Goodarzi

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Abstract

Purpose

This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile.

Design/methodology/approach

Incompressible unsteady reynolds-averaged navier-stokes (URANS) approach using gamma–theta turbulence model is conducted to obtain the time accurate turbulent flow field. The Ffowcs Williams and Hawkings (FW-H) acoustic analogy formulation is used for noise predictions at optimal tip speed ratio (TSR).

Findings

The mean torque and power coefficients are compared with the experimental data and acceptable agreement is observed. The total and Mono+Dipole noise graphs are presented. A discrete tonal component at low frequencies in all graphs is attributed to the blade passing frequency at the given TSR. According to the noise prediction results, Bach type rotor has the lowest level of noise emission. The effect of TSR on the noise level from the Bach rotor is investigated. A direct relation between angular velocity and the noise emission is found.

Practical implications

The savonius rotor is a type of vertical axis wind turbines suited for mounting in the vicinity of residential areas. Also, wind turbines wherein operation are efficient sources of tonal and broadband noises and affect the inhabitable environment adversely. Therefore, the acoustic pollution assessment is essential for the installation of wind turbines in residential areas.

Originality/value

This study aims to investigate the radiated noise level of four common Savonius rotor blade profiles, namely, Bach type, Benesh type, semi-elliptic and conventional. As stated above, numbers of studies exploit the URANS method coupled with the FW-H analogy to predict the aeroacoustics behavior of wind turbines. Therefore, this approach is chosen in this research to deal with the aeroacoustics and aerodynamic calculation of the flow field around the aforementioned Savonius blade profiles. The effect of optimal TSR on the emitted noise and the contribution of thickness, loading and quadrupole sources are of interest in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2023

Xueli Song, Fengdan Wang, Rongpeng Li, Yuzhu Xiao, Xinbo Li and Qingtian Deng

In structural health monitoring, localization of multiple slight damage without baseline data is significant and difficult. The purpose of this paper is to discuss these issues.

Abstract

Purpose

In structural health monitoring, localization of multiple slight damage without baseline data is significant and difficult. The purpose of this paper is to discuss these issues.

Design/methodology/approach

Damage in the structure causes singularities of displacement modes, which in turn reveals damage. Methods based on the displacement modes may fail to accurately locate the slight damage because the slight damage in engineering structure results in a relatively small variation of the displacement modes. In comparison with the displacement modes, the strain modes are more sensitive to the slight damage because the strain is the derivative of the displacement. As a result, the slight variation in displacement data will be magnified by the derivative, leading to a significant variation of the strain modes. A novel method based on strain modes is proposed for the purpose of accurately locating the multiple slight damage.

Findings

In the two bay beam and steel fixed-fixed beams, the numerical simulations and the experimental cases, respectively, illustrate that the proposed method can achieve more accurate localization in comparison with the one based on the displacement modes.

Originality/value

The paper offers a practical approach for more accurate localization of multiple slight damage without baseline data. And the robustness to measurement noise of the proposed method is evaluated for increasing levels of artificially added white Gaussian noise until its limit is reached, defining its range of practical applicability.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 June 2013

Michael Dawson, Duncan Borman, Robert B. Hammond, Daniel Lesnic and Dominic Rhodes

The purpose of this paper is to apply the meshless method of fundamental solutions (MFS) to the two‐dimensional time‐dependent heat equation in order to locate an unknown internal…

Abstract

Purpose

The purpose of this paper is to apply the meshless method of fundamental solutions (MFS) to the two‐dimensional time‐dependent heat equation in order to locate an unknown internal inclusion.

Design/methodology/approach

The problem is formulated as an inverse geometric problem, using non‐invasive Dirichlet and Neumann exterior boundary data to find the internal boundary using a non‐linear least‐squares minimisation approach. The solver will be tested when locating a variety of internal formations.

Findings

The method implemented was proven to be both stable and reasonably accurate when data were contaminated with random noise.

Research limitations/implications

Owing to limited computational time, spatial resolution of internal boundaries may be lower than some similar case investigations.

Practical implications

This research will have practical implications to the modelling and monitoring of crystalline deposit formations within the nuclear industry, allowing development of future designs.

Originality/value

Similar work has been completed in regards to the steady state heat equation, however to the best of the authors' knowledge no previous work has been completed on a time‐dependent inverse inclusion problem relating to the heat equation, using the MFS. Preliminary results presented here will have value for possible future design and monitoring within the nuclear industry

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 9 December 2022

Jiaru Shao, Xueping Mo, Zijun Zheng and Yu Yang

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great…

Abstract

Purpose

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great significance to study the jet noise characteristics of double S-bend nozzles.

Design/methodology/approach

The multiparameter coupling and super-ellipse design methods are used to design the cross section of double S-bend nozzle. Taking unsteady flow information as the equivalent sound source, the noise signal at the far-field monitoring points were calculated with Ffowcs Williams–Hawkings (FW–H) method, and then, the sound source characteristics of the double S-bend nozzle are analyzed.

Findings

The results show that the internal flow of the S-bend nozzle with rectangular section is smoothed and the aerodynamic performance is better than super-ellipse section, the shear layer length of rectangular section is longer, the thickness is smaller and the mixing ability is stronger. The sound pressure level of the two S-bend nozzles decreases with the increase of the monitoring angle, and the sound pressure on the horizontal plane is greater than the vertical plane. In the direction of 40°–120°, the jet noise of rectangular nozzle is smaller, and the multiparameter coupled rectangular cross section structure is more applicable.

Practical implications

It is beneficial to reduce the jet noise of the engine tail nozzle and improve the stealth performance of the aircraft.

Originality/value

There is very little research on the jet noise characteristics of the double S-bend nozzle. The multiparameter coupling and the super-ellipse method are used to design the nozzle flow section to study the aerodynamic performance and jet noise characteristics of the double S-bend nozzle and to improve the acoustic stealth characteristics of the aircraft.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2005

Adnan Ibrahimbegović, Igor Grešovnik, Damijan Markovič, Sergiy Melnyk and Tomaž Rodič

Proposes a methodology for dealing with the problem of designing a material microstructure the best suitable for a given goal.

2004

Abstract

Purpose

Proposes a methodology for dealing with the problem of designing a material microstructure the best suitable for a given goal.

Design/methodology/approach

The chosen model problem for the design is a two‐phase material, with one phase related to plasticity and another to damage. The design problem is set in terms of shape optimization of the interface between two phases. The solution procedure proposed herein is compatible with the multi‐scale interpretation of the inelastic mechanisms characterizing the chosen two‐phase material and it is thus capable of providing the optimal form of the material microstructure. The original approach based upon a simultaneous/sequential solution procedure for the coupled mechanics‐optimization problem is proposed.

Findings

Several numerical examples show a very satisfying performance of the proposed methodology. The latter can easily be adapted to other choices of design variables.

Originality/value

Confirms that one can thus achieve the optimal design of the nonlinear behavior of a given two‐phase material with respect to the goal specified by a cost function, by computing the optimal form of the shape interface between the phases.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 January 2007

Daniel Marjavaara and Staffan Lundström

This paper aims to develop an efficient and accurate numerical method that can be used in the design process of the waterways in a hydropower plant.

1125

Abstract

Purpose

This paper aims to develop an efficient and accurate numerical method that can be used in the design process of the waterways in a hydropower plant.

Design/methodology/approach

A range of recently published (2002‐2006) works, which aim to form the basis of a shape optimization tool for flow design and to increase the knowledge within the field of computational fluid dynamics (CFD) and surrogate‐based optimization techniques.

Findings

Provides information about how crude the optimization method can be regarding, for example, the design variables, the numerical noise and the multi objectives, etc.

Research limitations/implications

It does not give a detailed interpretation of the flow behaviour due to the lack of validation data.

Practical implications

A very useful flow design methodology that can be used in both academy and industry.

Originality/value

Shape optimization of hydraulic turbine draft tubes with aid of CFD and numerical optimization techniques has not been performed until recently due to the high CPU requirements on CFD simulations. The paper investigates the possibilities of using the global optimization algorithm response surface methodology in the design process of a full scale hydraulic turbine draft tube.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 May 2012

Hoa N. Xuan, Jean‐Louis Coulomb, Laurent Gerbaud, Jean‐Christophe Crebier and Nicolas Rouger

The purpose of this paper is to present an effective optimization strategy applied in a physical structure optimization of a semiconductor power metal oxide semiconductor…

Abstract

Purpose

The purpose of this paper is to present an effective optimization strategy applied in a physical structure optimization of a semiconductor power metal oxide semiconductor field‐effect transistor (MOSFET), with an expensive integration constraint computation.

Design/methodology/approach

In order to deal with inaccuracy due to inevitable numerical errors in the objective function calculation (the power losses of the power MOSFET) and in the constraint computation, the paper proposes to use the progressive quadratic response surface method (PQRSM).

Findings

The paper focuses on four aspects: the inevitable numerical errors in the power loss and the integration constraint computation; the response surface approximation (RSA) method; the PQRSM principle; and finally the comparisons of several optimization methods applied on this application problem.

Originality/value

An original optimization method, PQRSM, is proposed for reducing the oscillation problem of a semi‐analytical model. The optimization results of PQRSM have been compared with the evolution strategy (ES) algorithm, with similar results but faster computation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2014

Timo Rahkonen and Janne P. Aikio

The purpose of this paper is to propose a method to reduce the non-linear distortion of a transistor to its input and output ports to aid distortion contribution analysis (DCA)…

Abstract

Purpose

The purpose of this paper is to propose a method to reduce the non-linear distortion of a transistor to its input and output ports to aid distortion contribution analysis (DCA). This is especially needed when the internal structure of a device model is complex.

Design/methodology/approach

The non-linear distortion generated by all non-linear sources inside a device model are reduced to transistor i/o ports by LMSE fitting techniques. Simulations of an LDMOS power transistor are used to compare the reduced distortion results with the actual non-linear sources.

Findings

It is shown, that device models where the current sources are split by intermediate nodes cause superficial results, when distortion contributions are calculated as a superposition of contributions from individual non-linear sources. The proposed iterative fitting technique works.

Research limitations/implications

Some non-quasistatic effects and the transfer functions from external terminals to internal controlling nodes are not covered.

Practical implications

The analysis is a step toward a generic non-linear distortion contribution simulation tool that would aid the designers to develop more linear analog circuits.

Originality/value

The concept of DCA itself is fairly new. This paper makes a step to represent the distortion sources in a canonical way.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 5000