Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 30 March 2021

Habtamu Garoma Debela

The purpose of this study is to develop stable, convergent and accurate numerical method for solving singularly perturbed differential equations having both small and large delay.

1014

Abstract

Purpose

The purpose of this study is to develop stable, convergent and accurate numerical method for solving singularly perturbed differential equations having both small and large delay.

Design/methodology/approach

This study introduces a fitted nonpolynomial spline method for singularly perturbed differential equations having both small and large delay. The numerical scheme is developed on uniform mesh using fitted operator in the given differential equation.

Findings

The stability of the developed numerical method is established and its uniform convergence is proved. To validate the applicability of the method, one model problem is considered for numerical experimentation for different values of the perturbation parameter and mesh points.

Originality/value

In this paper, the authors consider a new governing problem having both small delay on convection term and large delay. As far as the researchers' knowledge is considered numerical solution of singularly perturbed boundary value problem containing both small delay and large delay is first being considered.

Details

Arab Journal of Mathematical Sciences, vol. 28 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 20 August 2021

Enrique Sanmiguel-Rojas and Ramon Fernandez-Feria

This paper aims to analyze the propulsive performance of small-amplitude pitching foils at very high frequencies with double objectives: to find out scaling laws for the…

Abstract

Purpose

This paper aims to analyze the propulsive performance of small-amplitude pitching foils at very high frequencies with double objectives: to find out scaling laws for the time-averaged thrust and propulsive efficiency at very high frequencies; and to characterize the Strouhal number above which the effect of turbulence on the mean values cannot be neglected.

Design/methodology/approach

The thrust force and propulsive efficiency of a pitching NACA0012 foil at high reduced frequencies (k) and a Reynolds number Re = 16 000 are analyzed using accurate numerical simulations, both assuming laminar flow and using a transition turbulence model. The time-averaged results are validated with available experimental data for k up to about 12 (Strouhal number, St, up to 0.6). This study also compares the present numerical results with the predictions of theoretical models and existing numerical results. For a foil pitching about its quarter chord with amplitude α0 = 8o, the reduced frequency is varied here up to k = 30 (St up to 2), much higher than in any previous numerical or experimental work.

Findings

For this pitch amplitude, turbulence effects are found negligible for St ≲ 0.8, and affecting less than 10% to the time-averaged thrust coefficient CT¯ for larger St Linear potential theory fails for very large k, even for the small pitch amplitude considered, particularly for the power coefficient, and therefore for the propulsive efficiency. It is found that CT¯St2 for large St, in agreement with recent models, and the propulsive efficiency decays as 1/k, in disagreement with the linear potential theory.

Originality/value

Pitching foils are increasingly studied as efficient propellers and energy harvesting devices. Their performance at very high reduced frequencies has not been sufficiently analyzed before. The authors provide accurate numerical simulations to discern when turbulence is relevant for the computation of the time-averaged thrust and efficiency and how their scaling with the reduced frequency is affected in relation to the laminar-flow predictions. This is relevant because some small-amplitude theoretical models predict high propulsive efficiency of pitching foils at very high frequencies over certain ranges of the structural parameters, and only very accurate numerical simulations may decide on these predictions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 March 2022

Jaehyuk Choi and Rong Chen

Risk parity, also known as equal risk contribution, has recently gained increasing attention as a portfolio allocation method. However, solving portfolio weights must resort to…

1571

Abstract

Risk parity, also known as equal risk contribution, has recently gained increasing attention as a portfolio allocation method. However, solving portfolio weights must resort to numerical methods as the analytic solution is not available. This study improves two existing iterative methods: the cyclical coordinate descent (CCD) and Newton methods. The authors enhance the CCD method by simplifying the formulation using a correlation matrix and imposing an additional rescaling step. The authors also suggest an improved initial guess inspired by the CCD method for the Newton method. Numerical experiments show that the improved CCD method performs the best and is approximately three times faster than the original CCD method, saving more than 40% of the iterations.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 30 no. 2
Type: Research Article
ISSN: 1229-988X

Keywords

Open Access
Article
Publication date: 7 September 2021

Freddy H. Marín-Sánchez, Julián A. Pareja-Vasseur and Diego Manzur

The purpose of this article is to propose a detailed methodology to estimate, model and incorporate the non-constant volatility onto a numerical tree scheme, to evaluate a real…

Abstract

Purpose

The purpose of this article is to propose a detailed methodology to estimate, model and incorporate the non-constant volatility onto a numerical tree scheme, to evaluate a real option, using a quadrinomial multiplicative recombination.

Design/methodology/approach

This article uses the multiplicative quadrinomial tree numerical method with non-constant volatility, based on stochastic differential equations of the GARCH-diffusion type to value real options when the volatility is stochastic.

Findings

Findings showed that in the proposed method with volatility tends to zero, the multiplicative binomial traditional method is a particular case, and results are comparable between these methodologies, as well as to the exact solution offered by the Black–Scholes model.

Originality/value

The originality of this paper lies in try to model the implicit (conditional) market volatility to assess, based on that, a real option using a quadrinomial tree, including into this valuation the stochastic volatility of the underlying asset. The main contribution is the formal derivation of a risk-neutral valuation as well as the market risk premium associated with volatility, verifying this condition via numerical test on simulated and real data, showing that our proposal is consistent with Black and Scholes formula and multiplicative binomial trees method.

Details

Journal of Economics, Finance and Administrative Science, vol. 26 no. 52
Type: Research Article
ISSN: 2218-0648

Keywords

Open Access
Article
Publication date: 24 October 2021

Piergiorgio Alotto, Paolo Di Barba, Alessandro Formisano, Gabriele Maria Lozito, Raffaele Martone, Maria Evelina Mognaschi, Maurizio Repetto, Alessandro Salvini and Antonio Savini

Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical

Abstract

Purpose

Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical formulation, ill-conditioned and require suitable regularization to provide meaningful results. To test new regularization methods, there is the need of benchmark problems, which numerical properties and solutions should be well known. Hence, this study aims to define a benchmark problem, suitable to test new regularization approaches and solves with different methods.

Design/methodology/approach

To assess reliability and performance of different solving strategies for inverse source problems, a benchmark problem of current synthesis is defined and solved by means of several regularization methods in a comparative way; subsequently, an approach in terms of an artificial neural network (ANN) is considered as a viable alternative to classical regularization schemes. The solution of the underlying forward problem is based on a finite element analysis.

Findings

The paper provides a very detailed analysis of the proposed inverse problem in terms of numerical properties of the lead field matrix. The solutions found by different regularization approaches and an ANN method are provided, showing the performance of the applied methods and the numerical issues of the benchmark problem.

Originality/value

The value of the paper is to provide the numerical characteristics and issues of the proposed benchmark problem in a comprehensive way, by means of a wide variety of regularization methods and an ANN approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 20 June 2022

Radek Doubrava, Martin Oberthor, Petr Bělský and Bohuslav Cabrnoch

The purpose of this paper is to describe the approach for the design of cowlings for a new fast helicopter from the perspective of airworthiness requirements regarding high-speed…

Abstract

Purpose

The purpose of this paper is to describe the approach for the design of cowlings for a new fast helicopter from the perspective of airworthiness requirements regarding high-speed impact resistance.

Design/methodology/approach

Validated numerical simulation was applied to flat and simple curved test panels. High-speed camera measurement and non-destructive testing (NDT) results were used for verification of the numerical models. The final design was optimized and verified by validated numerical simulation.

Findings

The comparison between numerical simulation based on static material properties with experimental results of high-speed load shows no significant influence of strain rate effect in composite material.

Research limitations/implications

Owing to the sensitivity of the composite material on technology production, the results are limited by the material used and the production technology.

Practical implications

The application of flat and simple curved test panels for the verification and calibration of numerical models allows the optimized final design of the cowling and reduces the risk of structural non-compliance during verification tests.

Originality/value

Numerical models were verified for simulation of the real composite structure based on high-speed camera results and NDT inspection after impact. The proposed numerical model was simplified for application in a complex design and reduced calculation time.

Details

International Journal of Structural Integrity, vol. 13 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 28 June 2022

Yahya Alnashri and Hasan Alzubaidi

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary…

Abstract

Purpose

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary conditions. Then, the authors show that the GDM provides a comprehensive convergence analysis of several numerical methods for the considered model. The convergence is established without non-physical regularity assumptions on the solutions.

Design/methodology/approach

In this paper, the authors use the GDM to discretise a system of reaction diffusion equations with non-homogeneous Dirichlet boundary conditions.

Findings

The authors provide a generic convergence analysis of a system of reaction diffusion equations. The authors introduce a specific example of numerical scheme that fits in the gradient discretisation method. The authors conduct a numerical test to measure the efficiency of the proposed method.

Originality/value

This work provides a unified convergence analysis of several numerical methods for a system of reaction diffusion equations. The generic convergence is proved under the classical assumptions on the solutions.

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

212

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 June 2021

Mushtaq Ali, Mohammed Almoaeet and Basim Karim Albuohimad

This study aims to use new formula derived based on the shifted Jacobi functions have been defined and some theorems of the left- and right-sided fractional derivative for them…

Abstract

Purpose

This study aims to use new formula derived based on the shifted Jacobi functions have been defined and some theorems of the left- and right-sided fractional derivative for them have been presented.

Design/methodology/approach

In this article, the authors apply the method of lines (MOL) together with the pseudospectral method for solving space-time partial differential equations with space left- and right-sided fractional derivative (SFPDEs). Then, using the collocation nodes to reduce the SFPDEs to the system of ordinary differential equations, which can be solved by the ode45 MATLAB toolbox.

Findings

Applying the MOL method together with the pseudospectral discretization method converts the space-dependent on fractional partial differential equations to the system of ordinary differential equations.

Originality/value

This paper contributes to gain choosing the shifted Jacobi functions basis with special parameters a, b and give the authors this opportunity to obtain the left- and right-sided fractional differentiation matrices for this basis exactly. The results of the examples are presented in this article. The authors found that the method is efficient and provides accurate results, and the authors found significant implications for success in the science, technology, engineering and mathematics domain.

Details

Arab Journal of Mathematical Sciences, vol. 28 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000