Search results

1 – 10 of over 1000
Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 28 June 2022

Yahya Alnashri and Hasan Alzubaidi

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary…

Abstract

Purpose

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary conditions. Then, the authors show that the GDM provides a comprehensive convergence analysis of several numerical methods for the considered model. The convergence is established without non-physical regularity assumptions on the solutions.

Design/methodology/approach

In this paper, the authors use the GDM to discretise a system of reaction diffusion equations with non-homogeneous Dirichlet boundary conditions.

Findings

The authors provide a generic convergence analysis of a system of reaction diffusion equations. The authors introduce a specific example of numerical scheme that fits in the gradient discretisation method. The authors conduct a numerical test to measure the efficiency of the proposed method.

Originality/value

This work provides a unified convergence analysis of several numerical methods for a system of reaction diffusion equations. The generic convergence is proved under the classical assumptions on the solutions.

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

209

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 November 2023

Mengxia Du, Qiao Wang, Yan Zhang, Yu Bai, Chunqiu Wei and Chunyan Liu

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack…

Abstract

Purpose

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack analysis of flow mechanisms. Owing to computational difficulties, few people use numerical algorithms to combine them for discussion. Hence, this study aims to make a deep inquiry into the laminar flow and heat transfer of compressible Newtonian fluid in hypersonic aircraft with small attack angles.

Design/methodology/approach

In this paper, on the basis of mass, momentum and energy conservation laws, the governing equations of the hypersonic boundary layer are established. Viscosity, specific heat capacity and thermal conductivity are considered nonlinear functions concerning temperature. In virtue of the MacCormack finite difference method, the stationary numerical solutions are solved directly, and the validity of the algorithm is verified.

Findings

The results demonstrate that at Mach number 5, compared to the 0° attack angle, the maximum temperature near-wall at the 3° attack angle increases by about 25%. An enjoyable phenomenon is discovered, where the position corresponding to the maximum wall shear force shifts back as the attack angle and Mach number increase. The relationship between the near-wall maximum temperature versus attack angle and Mach number is fitted through numerical calculation results.

Originality/value

Empirical formulas can be used to estimate heat transfer characteristics at small attack angles, which will guide the design of aircraft thermal protection systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2024

Abhishek Kumar Singh and Krishna Mohan Singh

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and…

Abstract

Purpose

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.

Design/methodology/approach

The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.

Findings

Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.

Originality/value

Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 1000