Search results

1 – 10 of 964
Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

34

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2022

Muhammad Ayat, Azmat Ullah and Changwook Kang

The primary purpose of this study is to explore the relationship between the unsolicited proposal (USP) and the performance of private participation infrastructure (PPI) projects…

Abstract

Purpose

The primary purpose of this study is to explore the relationship between the unsolicited proposal (USP) and the performance of private participation infrastructure (PPI) projects in developing countries.

Design/methodology/approach

The main data set for this study was collected from the World Bank database consisting of 8,951 PPI projects that occurred in developing countries from 1996 to 2020. Hierarchical logistic regression was applied for investigating the effects of USPs on project success. Three moderators, namely, control of corruption, presence of local sponsor and project size were also included in the model to test the impact of their interactions with the USP on the performance of PPI projects. Further, to assess the impact of the effect of USPs, the average marginal effect was calculated. The framework used in this study consists of 18 control variables, three moderators and one noncontrolled independent variable (the USP).

Findings

The results of hierarchical logistic regression indicate that USPs have a significant and negative effect on the success of PPI projects occurring in developing countries. The negative effect of a USP weakens with the presence of local sponsors and stronger control of corruption in the host country. However, contrary to the authors’ expectations, the results show that project size does not significantly affect the association between USPs and the success of PPI projects. Moreover, the results of average marginal effects show that the negative impact of USP on the success of PPI projects ranges between 2.4% and 3.8%.

Originality/value

This study quantifies the negative impact of USP on the success of PPI projects in developing countries, which will be helpful for the practitioners to understand the associated risk with USP projects. Furthermore, it also identifies the moderating roles of control of corruption and the presence of local sponsors on the relationship between USP and the success of PPI projects.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 March 2024

Çağın Bolat, Nuri Özdoğan, Sarp Çoban, Berkay Ergene, İsmail Cem Akgün and Ali Gökşenli

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the…

Abstract

Purpose

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry.

Design/methodology/approach

Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings.

Findings

Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds.

Research limitations/implications

The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations.

Practical implications

It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling.

Social implications

It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers.

Originality/value

This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 July 2023

Kashif Noor, Mubashir Ali Siddiqui and Amir Iqbal Syed

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a…

Abstract

Purpose

This study was conducted to analyze the effects of machining parameters on the specific energy consumption in the computerized numerical control lathe turning operation of a hardened alloy steel roll at low cutting speeds. The aim was to minimize its consumption.

Design/methodology/approach

The design matrix was based on three variable factors at three levels. Response surface methodology was used for the analysis of experimental results. Optimization was carried out by using the desirability function and genetic algorithm. A multiple regression model was used for relationship build-up.

Findings

According to desirability function, genetic algorithm and multiple regression analysis, optimal machining parameters were cutting speed 40 m/min, feed 0.2 mm/rev and depth of cut 0.50 mm, which resulted in minimal specific energy consumption of 0.78, 0.772 and 0.78 kJ/mm3, respectively. Correlation analysis and multiple regression model found a quadratic relationship between specific energy consumption with power consumption and material removal rate.

Originality/value

In the past, many researchers have developed mathematical models for specific energy consumption, but these models were developed at high cutting speed, and a majority of the models were based on the material removal rate as the independent variable. This research work developed a mathematical model based on the machining parameters as an independent variable at low cutting speeds, for a new type of large-sized hardened alloy steel roll. A multiple regression model was developed to build a quadratic relationship of specific energy consumption with power consumption and material removal rate. This work has a practical application in hot rolling industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 11 April 2023

Tarek Salama and Hisham Said

The purpose of this paper is to determine if companies in the modular and offsite construction (MOC) industry are agile or not and its level of application for agility principles…

Abstract

Purpose

The purpose of this paper is to determine if companies in the modular and offsite construction (MOC) industry are agile or not and its level of application for agility principles, which allows for quick responses to the increasingly dynamic nature of industry environments.

Design/methodology/approach

This paper proposes an agility assessment framework for MOC that uses 48 assessment attributes organized into four categories: metrics, drivers, enablers and capabilities. A questionnaire approach was used to disseminate the framework globally in 19 countries and synthesize its relevance to the MOC industry. The questionnaire had 55 complete responses, majority of respondents work in managerial positions for MOC manufacturing facilities and onsite general contractors.

Findings

It was found that the lowest metric score for adapting to change was for cost since controlling cost would be difficult for any changes required after the design freeze stage. The top agility driver was found to be the need to respond to the wide variety of customer expectations, while the lowest driver was the existence of competing priorities. The top agility enabler was vendor partnership, which can be related to current postpandemic supply chain disruptions. Regarding technological capabilities, Europe and the USA acquired better scores compared to Asia, Latin America and Africa.

Originality/value

This study contributes to the MOC body of knowledge by creating an agility assessment tool for MOC firms to analyze their agile approach and environment, identifying the preliminary importance of agility assessment attributes and determining significant agile differences between the main MOC industry groups.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 964