Search results

1 – 10 of 23
Open Access
Article
Publication date: 1 November 2023

Hamed Abdelreheem Ead

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry…

Abstract

Purpose

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry, biology, math, geology, astronomy and engineering. The paper highlights the struggles and successes of these scientists, as well as the cultural, social and political factors that influenced their lives and work. The aim is to inspire young people to pursue careers in science and make their own contributions to society by presenting these scientists as role models for hard work and dedication. Ultimately, the paper seeks to promote the importance of science and its impact on society.

Design/methodology/approach

The purpose of this review is to present the scientific biographies of Egypt's most distinguished scientists, primarily in the field of Natural Sciences, in a balanced and comprehensive manner. The work is objective, honest and abstract, avoiding any bias or exaggeration. The author provides a clear and concise methodology, including a brief introduction to the scientist and their field of study, an explanation of their major contributions, the impact of their work on society, any challenges or obstacles faced during their career and their lasting legacy. The aim is to showcase the important achievements of these scientists, their impact on their respective fields and to inspire future generations to pursue scientific careers.

Findings

The group of outstanding scientists in 20th century Egypt were shaped by various factors, including familial upbringing, education, society, political and cultural atmosphere and state support for scientific research. These scientists made significant contributions to various academic disciplines, including medicine, physics, chemistry, biology, mathematics and engineering. Their impact on their communities and cultures has received international acclaim, making them role models for future generations of scientists and researchers. The history of these scientists highlights the importance of educational investments and supporting scientific research to foster innovation and social progress. The encyclopedia serves as a useful tool for students, instructors and education professionals, preserving Egypt's scientific heritage and honouring the scientists' outstanding accomplishments.

Research limitations/implications

The encyclopedia preserves Egypt's scientific heritage, which has been overlooked for political or other reasons. It is a useful tool for a variety of readers, including students, instructors and education professionals, and it offers insights into universally relevant scientific success factors as well as scientific research methodologies. The encyclopedia honours the outstanding scientific accomplishments of Egyptian researchers and their contributions to the world's scientific community.

Practical implications

The practical implications of this paper are several. First, it highlights the importance of education, family upbringing and societal support for scientific research in fostering innovation and social progress. Second, it underscores the need for continued funding and support for scientific research to maintain and build upon the accomplishments of past generations of scientists. Third, it encourages young people to pursue scientific careers and make their own contributions to society. Fourth, it preserves the scientific heritage of Egypt and honors the contributions of its outstanding scientists. Finally, it serves as a useful tool for students, instructors and education professionals seeking to understand the factors underlying scientific success and research methodologies.

Social implications

The social implications of the paper include promoting national pride and cultural identity, raising awareness of the importance of education and scientific research in driving social progress, inspiring future generations of scientists and researchers, reducing socioeconomic disparities and emphasizing the role of society, politics and culture in shaping scientific researchers' personalities and interests.

Originality/value

The paper's originality/value lies in its comprehensive documentation of the scientific biographies of Egypt's most prominent scientists in the 20th century, providing unique insights into the factors that contributed to their development and their impact across various academic disciplines. It preserves Egypt's scientific heritage and inspires future generations of scientists and researchers through the promotion of educational investments and scientific research. The encyclopedia serves as a useful tool for education professionals seeking to understand scientific success factors and research methodologies, emphasizing the importance of supportive and inclusive environments for scientific development.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

19

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2023

Jing Chen, Hongli Chen and Yingyun Li

Cross-app interactive search has become the new normal, but the characteristics of their tactic transitions are still unclear. This study investigated the transitions of daily…

Abstract

Purpose

Cross-app interactive search has become the new normal, but the characteristics of their tactic transitions are still unclear. This study investigated the transitions of daily search tactics during the cross-app interaction search process.

Design/methodology/approach

In total, 204 young participants' impressive cross-app search experiences in real daily situations were collected. The search tactics and tactic transition sequences in their search process were obtained by open coding. Statistical analysis and sequence analysis were used to analyze the frequently applied tactics, the frequency and probability of tactic transitions and the tactic transition sequences representing characteristics of tactic transitions occurring at the beginning, middle and ending phases. 

Findings

Creating the search statement (Creat), evaluating search results (EvalR), evaluating an individual item (EvalI) and keeping a record (Rec) were the most frequently applied tactics. The frequency and probability of transitions differed significantly between different tactic types. “Creat? EvalR? EvalI? Rec” is the typical path; Initiate the search in various ways and modifying the search statement were highlighted at the beginning phase; iteratively creating the search statement is highlighted in the middle phase; Moreover, utilization and feedback of information are highlighted at the ending phase. 

Originality/value

The present study shed new light on tactic transitions in the cross-app interactive environment to explore information search behaviour. The findings of this work provide targeted suggestions for optimizing APP query, browsing and monitoring systems.

Details

Information Technology & People, vol. 37 no. 3
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 30 January 2024

Gerald McNerney

The purpose of this study is to create an ethical norm that will help guide the human race toward long-term survival.

Abstract

Purpose

The purpose of this study is to create an ethical norm that will help guide the human race toward long-term survival.

Design/methodology/approach

The project posits a new societal ethical norm designed around a fundamental principle: the long-term survival of the human race with individual dignity. This study examines the requirements of the new norm and what is needed to achieve that goal.

Findings

There are three types of organizations that have the organizational and economic capacity to be responsible for future outcomes: governments, religions and corporations. These three types of organizations must act as if they have a moral compass that will compel them to develop and uphold the requirements for the survival of humanity with individual dignity.

Research limitations/implications

The analysis shows that a new, broader ethical norm must be established, and this norm implies that large organizations must act with a future embracing ethical behavior.

Practical implications

This study generates specific pathways for example: governments should adopt the just war principles and prohibitions on governments or other institutions from teaching any form of class superiority. These and other pathways are designed to diffuse threats to the fundamental principle.

Social implications

The fundamental principle includes universal human dignity. This means that the notion of individual dignity must be defined or understood, and the requirements to attain this goal must be identified.

Originality/value

This project takes concepts from long-termism, forward-looking collective responsibility, corporate social responsibility and the global catastrophic risk institute to advocate for a new ethical norm.

Article
Publication date: 13 February 2024

Ilkay Cankurtaran and M. Halis Gunel

Cancer has become a priority among today’s health problems. Therefore, providing facilities that ensure high-quality cancer treatment has become an essential design problem…

25

Abstract

Purpose

Cancer has become a priority among today’s health problems. Therefore, providing facilities that ensure high-quality cancer treatment has become an essential design problem. Additionally, a considerable number of studies have introduced the ‘healing environment concept’ as a substantial input for healthcare buildings. The purpose of this paper is to present a design guide for cancer treatment services that is compatible with the healing environment concept.

Design/methodology/approach

In this context, studies on the healing environment have been analyzed, and the legislation of some selected countries has been assessed. Then, all the filtered data are used to form the design guideline for chemotherapy department, radiation oncology department and inpatient care services under a new series of analysis criteria.

Findings

The resulting principles are revealed according to the criteria of general settlement principles, internal function relations, medical necessities, user experience, interior design, social interaction/privacy, safety, landscape design and outdoor relations by the help of proposed plans, diagrams and schematic drawings.

Originality/value

This research constitutes the first and yet only study in its field that aims to increase efficiency and user satisfaction and provide better patient-centered care while providing a design guide on health-care architecture.

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 October 2022

Fatimah A.M. Al-Zahrani

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were…

Abstract

Purpose

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were designed and their molecular shape, electrical structures and characteristics have been explored using the density functional theory (DFT). The results satisfactorily explain that the higher conjugative effect resulted in a smaller high occupied molecular orbital–lowest unoccupied molecular orbital gap (Eg). Both compounds show intramolecular charge transfer (ICT) transitions in the ultraviolet (UV)–visible range, with a bathochromic shift and higher absorption oscillator strength, as determined by DFT calculations.

Design/methodology/approach

The produced PTZ-1 and PTZ-2 sensors were characterized using various spectroscopic methods, including Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H/13CNMR). UV–visible absorbance spectra of the generated D–π–A PTZ-1 and A–π–D–π–A PTZ-2 dyes were explored in different solvents of changeable polarities to illustrate positive solvatochromism correlated to intramolecular charge transfer.

Findings

The emission spectra of PTZ-1 and PTZ-2 showed strong solvent-dependent band intensity and wavelength. Stokes shifts were monitored to increase with the increase of the solvent polarity up to 4122 cm−1 for the most polar solvent. Linear energy-solvation relationship was applied to inspect solvent-dependent Stokes shifting. Quantum yield (ф) of PTZ-1 and PTZ-2 was also explored. The maximum UV–visible absorbance wavelengths were detected at 417 and 419 nm, whereas the fluorescence intensity was monitored at 586 and 588 nm.

Originality/value

The PTZ-1 and PTZ-2 dyes leading to colorimetric and emission spectral changes together with a color shift from yellow to red.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 23