Search results

1 – 10 of 19
Article
Publication date: 1 March 2022

Kriparaj K.G., Roy V. Paul, Tide P.S. and Biju N.

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging…

Abstract

Purpose

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging technique.

Design/methodology/approach

The Schlieren images were captured for seven different nozzle pressure ratios (NPR = 2, 3, 4, 5, 6, 7 and 8) and compared with the shock cell structure of a round nozzle with an identical exit area. The variation in the length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first shock cell, Mach disk position and diameter for different NPR was measured from the Schlieren images and analysed.

Findings

A three-layer shock net observed in the jet emanating from the four-lobed corrugated nozzle is a novel concept in the field of under-expanded jet flows. A shock net represents interconnected layers of shock cells developed because of the interaction between the core and peripheral shock waves in a jet emanating from a corrugated lobed nozzle. Also, the pattern of shock net is different while taking Schlieren images across the groove and lobe sections. Thus, the shock net emerging from a corrugated lobed nozzle varies azimuthally and primarily depends on the nozzle exit cross section. The length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first cell, Mach disk position and diameter were found to exhibit increasing trend with NPR.

Originality/value

A novel concept of interconnected layers of shock waves defined as “shock net” developed from a single jet emanating from a four-lobed corrugated nozzle was observed.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 August 2019

Sathish Kumar K. and Senthilkumar Chidambaram

The purpose of this study is to increase the jet mixing effectiveness of Mach 1.6 axisymmetric jet using semi-circular corrugated triangular tabs (Tabs A, B and C), in which the…

Abstract

Purpose

The purpose of this study is to increase the jet mixing effectiveness of Mach 1.6 axisymmetric jet using semi-circular corrugated triangular tabs (Tabs A, B and C), in which the locations of the semi-circular corrugations are varied along the leaned sides of the triangular tabs.

Design/methodology/approach

The tabs are fixed at the exit of the nozzle facing each other 180° apart. To quantify the jet mixing effectiveness of the semi-circular corrugated tabs, Pitot pressure measurements were carried out for the cases of over-expansion, marginally over-expansion and under-expansion levels of Mach 1.6 jet, along the jet centerline and the jet spread, along and normal to the tab axis.

Findings

The results exhibit that the semi-circular corrugated Tab A augments the jet mixing when compared to Tabs B and C. This impact in jet mixing is strongly due to the small-scale vortices shed from the tabs and the mixed effect of the corrugation locations and expansion ratio. The maximum percentage reduction in core length is about 73.6 per cent for the jet with semi-circular corrugated Tab A at NPR 5, whereas it is 71.4 and 67.1 per cent for Tabs B and C, respectively.

Practical implications

The reduction in core length of the jet with minimum thrust loss is obtained by controlling the jet used with semi-circular corrugated triangular tabs of equal blockage ratio 5.12 per cent with respect to the nozzle exit diameter.

Originality/value

The locations of the semi-circular corrugations varied systematically at the equally leaned sides of the triangular tab ensure the novelty of this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 March 2008

Shafiqur Rehman and S.A. Khan

This paper aims to present the results of an experimental investigation carried out to control the base pressure in a suddenly expanded axi‐symmetric passage.

Abstract

Purpose

This paper aims to present the results of an experimental investigation carried out to control the base pressure in a suddenly expanded axi‐symmetric passage.

Design/methodology/approach

Four micro‐jets of 1 mm orifice diameter located at 90° interval along a pitch circle diameter of 1.3 times the nozzle exit diameter in the base region was employed as active controls. The test Mach numbers were 1.25, 1.3, 1.48, 1.6, 1.8, 2.0, 2.5 and 3.0. The jets were expanded suddenly into an axi‐symmetric tube with cross‐sectional area 4.84 times that of nozzle exit area. The length‐to‐diameter ratio of the sudden expansion tube was varied from 10 to 1. Nozzles generating the above jet Mach numbers were operated with nozzle pressure ratio in the range 3‐11. As high as 40 per cent increase in base pressure was achieved. In addition to base pressure, the wall pressure in the duct was also measured.

Findings

It is found that the wall pressure is not adversely influenced by the micro jets.

Originality/value

The paper provides information on internal supersonic flow.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 31 October 2018

Mubarak A.K. and Tide P.S.

The purpose of this paper is to design a double parabolic nozzle and to compare the performance with conventional nozzle designs.

Abstract

Purpose

The purpose of this paper is to design a double parabolic nozzle and to compare the performance with conventional nozzle designs.

Design/methodology/approach

The throat diameter and divergent length for Conical, Bell and Double Parabolic nozzles were kept same for the sake of comparison. The double parabolic nozzle has been designed in such a way that the maximum slope of the divergent curve is taken as one-third of the Prandtl Meyer (PM) angle. The studies were carried out at Nozzle Pressure Ratio (NPR) of 5 and also at design conditions (NPR = 3.7). Experimental measurements were carried out for all the three nozzle configurations and the performance parameters compared. Numerical simulations were also carried out in a two-dimensional computational domain incorporating density-based solver with RANS equations and SST k-ω turbulence model.

Findings

The numerical predictions were found to be in reasonable agreement with the measured experimental values. An enhancement in thrust was observed for double parabolic nozzle when compared with that of conical and bell nozzles.

Research limitations/implications

Even though the present numerical simulations were capable of predicting shock cell parameters reasonably well, shock oscillations were not captured.

Practical implications

The double parabolic nozzle design has enormous practical importance as a small increase in thrust can result in a significant gain in pay load.

Social implications

The thrust developed by the double parabolic nozzle is seen to be on the higher side than that of conventional nozzles with better fuel economy.

Originality/value

The overall performance of the double parabolic nozzle is better than conical and bell nozzles for the same throat diameter and length.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 July 2006

S.A. Khan and E. Rathakrishnan

This paper presents an experimental investigation to study the effectiveness of micro jets under the influence of Over, Under, and Correct expansion to control the base pressure

Abstract

Purpose

This paper presents an experimental investigation to study the effectiveness of micro jets under the influence of Over, Under, and Correct expansion to control the base pressure in suddenly expanded axi‐symmetric ducts.

Design/methodology/approach

Four micro jets of 1 mm orifice diameter located at 90° intervals along a pitch circle diameter of 1.3 times the nozzle exit diameter in the base region was employed as active controls. The tests were conducted for Mach numbers 1.5, 1.3, 1.6, 1.8, 2.0, 2.5, and 3.0. The jets were expanded suddenly into an axi‐symmetric tube with cross‐sectional area 2.56 times that of nozzle exit area. The L/D ratio of the sudden expansion tube was varied from 10 to 1.

Findings

From the present studies, it was found that the maximum increase in base pressure is 152 percent for Mach number 2.58. It is found that the micro jets do not adversely influence the wall pressure distribution.

Research limitations/implications

As a result of developments in space flights and missile technology, the base flows at high Reynolds numbers continues to be an important area of research. Our understanding of many features of base flows remains poor, due to inadequate knowledge of turbulence, particularly in the presence of strong pressure gradient.

Originality/value

The paper shows that micro jets can serve as an effective controller raising the base suction to almost zero level for some combination for parameters. The nozzle pressure ratio has a definite role to play in fixing the base pressure with and without control. There is no adverse effect of the micro jets on the flow field in the duct.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 August 2021

Jaimon Dennis Quadros, S.A. Khan and Hanumantharaya R.

The purpose of this study is to evaluate the effect of tabs having different corner geometries on the flow characteristics of a supersonic convergent–divergent (C-D) nozzle.

Abstract

Purpose

The purpose of this study is to evaluate the effect of tabs having different corner geometries on the flow characteristics of a supersonic convergent–divergent (C-D) nozzle.

Design/methodology/approach

A circular C-D nozzle of Mach 2.0 was used, and the tabs were positioned at the exit of the nozzle in diametrically opposite directions. Three tabs having different corner geometry implemented in the experiments were rectangular tab with triangular top edge, triangular tab with a bell-shaped edge and tapered tab. The pressure profiles across the tabs and the centerline pressure decay along the jets were measured. The shadowgraph technique illustrated the waves present in the center of an oncoming jet. The nozzle pressure ratios (NPR) were varied from 4 to 8, in the steps of one, covering various overexpansion and under expansion levels at the exit of the nozzle.

Findings

The results showed tapered tabs act as a better mixing promoter than the other tabs used in the study. A reduction of 91.25% in core length for NPR 8 was observed for the tapered tabs. Subsequently, core length reductions generated by triangular tabs with a bell-shaped top edge were 87.5%, and those caused by rectangular tabs with a triangular top edge were 7.5%.

Practical implications

The research results could be used for designing combustion chambers and chemical reactors that require jets to enhance mixing levels.

Originality/value

The tabs having three different corners geometries, i.e. sharp or pointed, bell-shaped and straight edge has never been investigated before. The idea of only modifying corners is the innovative step of this research.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 September 2021

Sathish Kumar K, Naren Shankar R, Anusindhiya K and Senthil Kumar B.R.

This study aims to present the numerical study on supersonic jet mixing characteristics of the co-flow jet by varying lip thickness (LT). The LT chosen for the study is 2 mm, 7.75…

Abstract

Purpose

This study aims to present the numerical study on supersonic jet mixing characteristics of the co-flow jet by varying lip thickness (LT). The LT chosen for the study is 2 mm, 7.75 mm and 15 mm.

Design/methodology/approach

The primary nozzle is designed for delivering Mach 2.0 jet, whereas the secondary nozzle is designed for delivering Mach 1.6 jet. The Nozzle pressure ratio chosen for the study is 3 and 5. To study the mixing characteristics of the co-flow jet, total pressure and Mach number measurements were taken along and normal to the jet axis. To validate the numerical results, the numerical total pressure values were also compared with the experimental result and it is proven to have a good agreement.

Findings

The results exhibit that, the 2 mm lip is shear dominant. The 7.75 mm and 15 mm lip is wake dominant. The jet interaction along the jet axis was also studied using the contours of total pressure, Mach number, turbulent kinetic energy and density gradient. The radial Mach number contours at the various axial location of the jet was also studied.

Practical implications

The effect of varying LT in exhaust nozzle plays a vital role in supersonic turbofan aircraft.

Originality/value

Supersonic co-flowing jet mixing effectiveness by varying the LT between the primary supersonic nozzle and the secondary supersonic nozzle has not been analyzed in the past.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 May 2023

Ezhilmaran G., Sekar S., Sathish Kumar K. and Thanigaiarasu S.

This study aims to investigate the effect of slanted perforation diameter in tabs for the control of Mach 1.4 underexpanded supersonic jet flow characteristics.

Abstract

Purpose

This study aims to investigate the effect of slanted perforation diameter in tabs for the control of Mach 1.4 underexpanded supersonic jet flow characteristics.

Design/methodology/approach

Numerical investigation was carried out for NPR 5 to analyze the effect of slanted perforation diameter in tabs to control the Mach 1.4 jet. Four sets of tabs with slanted circular perforation geometries (Φp = 1, 1.5, 2 and 2.5 mm) were considered in this study. The inclination angle of 20° (αP) with reference to the jet axis was maintained constant for all the four tabs considered.

Findings

Determined value indicates there is a 68%, 71%, 73% and 75% drop in supersonic core for the Φp = 1, 1.5, 2.0 and 2.5 mm, respectively. The results show that the tabs with 2.5 mm perforation diameter were found to be efficient in reducing the supersonic jet core in comparison with other tab cases. The reduction in supersonic core length is due to the extent of miniscule vortices exuviating from slanted small and large diameter perforation in the tabs.

Practical implications

The concept of slanted perforation can be applied in scramjet combustion, which finds its best application in hypersonic vehicles and in noise suppression in fighter aircraft.

Originality/value

Slanted perforation and circular shapes with different diameters have not been studied in the supersonic regime. Examining the effect of circular diameter in slanted perforation is an innovation in this research paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 October 2018

S. Manigandan and Vijayaraja K.

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Abstract

Purpose

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Design/methodology/approach

Flow field characteristics of low-aspect-ratio elliptical jets are examined at over-expanded, under-expanded and correctly expanded conditions. The tabs are placed at elliptical jet exit along the major and minor axes.

Findings

The results show that the mixing done by the minor axis is superior to the tabs along major axis. At all pressure ratios, the content of jet noise and the frequency are high for the tabs along the major axis because of increase in the amplitude of screech frequency. Further the tabs along minor axis show a dominance of large-scale vertical structures. In under-expanded conditions, the shock cell shows the rapid change because of the presence of tabs. The tabs along minor axis are making the shock weaker, hence no evidence of axis switching.

Practical implications

To achieve the greater performance of jet, the authors need to reduce the potential core length of the issuing jet. This can be achieved by implementing different types of tabs at the exit of the nozzle.

Originality/value

The present paper represents the flow of controlled jet using inverted triangular tabs. By achieving the controlled jet flow, the performance of propulsion systems can be improved. This can be used in systems such as combustion chamber, missile’s noise reduction and thrust vector control.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 July 2022

Harish Soundararajan and Sridhar B.T.N.

This study aims to numerically study the three-dimensional (3D) flow field characteristics in a conical convergent divergent (CD) nozzle with an internal strut system to describe…

Abstract

Purpose

This study aims to numerically study the three-dimensional (3D) flow field characteristics in a conical convergent divergent (CD) nozzle with an internal strut system to describe the effect of struts on producing a side force for thrust vectoring applications.

Design/methodology/approach

Struts are solid bodies. When inserted into the supersonic region of the axisymmetric CD nozzle, it induces a shock wave that causes an asymmetric pressure distribution predominantly over the internal surface of the diverging wall of the C-D nozzle, creating a net side force similar to the secondary injection thrust vectoring control method. Numerical simulations were performed by solving Unsteady Reynolds Averaged Navier–Stokes equations with re-normalized group k–ϵ turbulence model. Cylindrical struts of various heights positioned at different locations in the divergent section of the nozzle were investigated at a nozzle pressure of 6.61.

Findings

Thrust vectoring angle of approximately 3.8 degrees was obtained using a single cylindrical strut with a dimensionless thrust (%) and total pressure loss of less than 2.36% and 2.67, respectively. It was shown that the thrust deflection direction could also be changed by changing the strut insertion location. A strut located at half of the diverging length produced a higher deflection per unit total pressure loss.

Practical implications

Using a lightweight and high-temperature resistant material, such as a strut, strut insertion-based thrust vectoring control might provide an alternative thrust vectoring method in applications where a longer period of control is needed with a reduced overall system weight.

Originality/value

This study describes the 3D flow field characteristics which result in side force generation by a supersonic nozzle with an internal strut.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 19