Search results

1 – 10 of 49
Open Access
Article
Publication date: 18 November 2021

Joanna Grochowalska, Piotr Jaworski, Łukasz Jan Kapusta and Jerzy Kowalski

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a…

Abstract

Purpose

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a model of diesel fuel spray for the early stage of fuel spray in the marine diesel engine. The main technical aspects such as nozzle diameter of the marine engine injector and backpressure in the combustion chamber were taken into consideration.

Design/methodology/approach

In this paper, laboratory experimental studies were carried out to determine parameters of fuel spray in an early stage of injection in the marine diesel engine. The optical measuring Mie scattering technique was used to record the fuel injection process. The working space was a constant volume chamber. The backpressure parameters in the constant volume chamber were the same as during the operation of the marine diesel engine. Based on the experimental studies and important Hiroyasu and Arai models of fuel spray presented in literature was proposed new model of fuel spray parameters for marine diesel injectors.

Findings

In this paper, the proposed new model of the two main parameters described fuel spray evolution”: new model of spray tip penetration (STP) and spray cone angle (SCA). New model propagation of fuel STP in time was included the influence of nozzle diameter and backpressure. The proposed model has a lower error, about 15%–34%, than the model of Hiroyasu and Arai. Moreover, a new model of the evolution over time of the SCA is developed.

Research limitations/implications

In the future research of fuel spray process must be taken influence of the fuel temperature. Diesel fuel has a different density and viscosity in dependence of fuel temperature. Therefore are predicted of the expansion about influence of fuel temperature, new model of fuel spray for a marine diesel engine. The main limitations occurring in the research are not possible to carry out the research while real operation marine diesel engine.

Originality/value

An experimental test was carried out for a real fuel injector of a marine diesel engine. Design parameters and fuel injection parameters were selected on the basis of the actual one. In the literature, SCA is defined as a constant parameter for the specific preliminary data. A new model for the early stage of fuel spray of SCA propagation in time has been proposed. The early stage of fuel spray is especially important, because in this time comes in there to fuel self-ignition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 10 July 2019

Sigmund Arntsønn Tronvoll, Sebastian Popp, Christer Westum Elverum and Torgeir Welo

This paper aims to present the mathematical foundation of so-called advance algorithms, developed to compensate for defects during acceleration and deacceleration of the print…

3798

Abstract

Purpose

This paper aims to present the mathematical foundation of so-called advance algorithms, developed to compensate for defects during acceleration and deacceleration of the print head in filament-based melt extrusion additive processes. It then investigates the validity of the mathematical foundation, its performance on a low-cost system and the effect of changing layer height on the algorithm’s associated process parameter.

Design/methodology/approach

This study starts with a compilation and review of literature associated with advance algorithms, then elaborates on its mathematical foundation and methods of implementation. Then an experiment displaying the performance of the algorithm implemented in Marlin machine firmware, Linear Advance 1.0, is performed using three different layer heights. The results are then compared with simulations of the system using Simulink.

Findings

Findings suggests that advance algorithms following the presented approach is capable of eliminating defects because of acceleration and deacceleration of the print head. The results indicate a layer height dependency on the associated process parameter, requiring higher compensation values for lower layer heights. It also shows higher compensation values for acceleration than deacceleration. Results from the simulated mathematical model correspond well with the experimental results but predict some rapid variations in flow rate that is not reflected in the experimental results.

Research limitations/implications

As there are large variations in printer design and materials, deviation between different setups must be expected.

Originality/value

To the best of authors’ knowledge, this study is the first to describe and investigate advance algorithms in academic literature.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

927

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 31 October 2022

Solomon O. Obadimu and Kyriakos I. Kourousis

The wide application of metal material extrusion (MEX) has been hampered by the practicalities associated with the resulting shrinkage of the final parts when commercial…

1958

Abstract

Purpose

The wide application of metal material extrusion (MEX) has been hampered by the practicalities associated with the resulting shrinkage of the final parts when commercial three-dimensional (3D) printing equipment is used. The shrinkage behaviour of MEX metal parts is a very important aspect of the MEX metal production process, as the parts must be accurately oversized to compensate for shrinkage. This paper aims to investigate the influence of primary 3D printing parameters, namely, print speed, layer height and print angle, on the shrinkage behaviour of MEX Steel 316L parts.

Design/methodology/approach

Two groups of dog-bone and rectangular-shape specimens were produced with the BASF Ultrafuse Steel 316L metal filament. The length, width and thickness of the specimens were measured pre- and post-debinding and sintering to calculate the percentile shrinkage rates. Analysis of variance (ANOVA) was used to evaluate and rank the significance of each manufacturing parameter on shrinkage. Typical main print quality issues experienced in this analysis are also reported.

Findings

The shrinkage rates of the tested specimens ranged from 15.5 to 20.4% along the length and width axis and 18.5% to 23.1% along the thickness axis of the specimens. Layer height and raster angle were the most statistically significant parameters influencing shrinkage, while print speed had very little influence. Three types of defects were observed, including surface roughness, surface deformation (warping and distortion) and balling defects.

Originality/value

This paper bridges an existing gap in MEX Steel 316L literature, with a focus on the relationship between MEX manufacturing parameters and subsequent shrinkage behaviour. This study provides an in-depth analysis of the relationship between manufacturing parameters – layer height, raster angle and print speed and subsequent shrinkage behaviour, thereby providing further information on the relationship between the former and the latter.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 October 2018

Maximilian Schniedenharn, Frederik Wiedemann and Johannes Henrich Schleifenbaum

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding…

2793

Abstract

Purpose

The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding oxygen content and shielding gas flow).

Design/methodology/approach

The measurements are made sequentially using a hot-wire anemometer. After a short introduction into the measurement technique, the system which places the measurement probe within the machine is described. Finally, the measured shielding gas flow of a commercial L-PBF machine is presented.

Findings

An approach to measure the shielding gas flow within SLM machines has been developed and successfully tested. The use of a thermal anemometer along with an automated probe-placement system enables the space-resolved measurement of the flow speed and its turbulence.

Research limitations/implications

The used single-normal (SN) hot-wire anemometer does not provide the flow vectors’ orientation. Using a probe with two or three hot-films and an improved placement system will provide more information about the flow and less disturbance to it.

Originality/value

A measurement system which allows the measurement of the shielding gas flow within commercial L-PBF machines is presented. This enables the correlation of the shielding gas flow with the resulting parts’ quality.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 June 2019

Younss Ait Mou and Muammer Koc

This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused…

1451

Abstract

Purpose

This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused deposition modeling (FDM), stereolithography (SLA) and material jetting (MJ)] and four different equipment (FDM, SLA, MJP 2600 and Object 260) in terms of their dimensional process capability (dimensional accuracy and surface roughness). It provides a comprehensive and comparative understanding about the level of attainable dimensional accuracy, repeatability and surface roughness of commonly used 3DP technologies. It is expected that these findings will help other researchers and industrialists in choosing the right technology and equipment for a given 3DP application.

Design/methodology/approach

A benchmark model of 5 × 5 cm with several common and challenging features, such as around protrusion and hole, flat surface, micro-scale ribs and micro-scale long channels was designed and printed repeatedly using four different equipment of three different 3DP technologies. The dimensional accuracy of the printed models was measured using non-contact digital measurement methods. The surface roughness was evaluated using a digital profilometer. Finally, the surface quality and edge sharpness were evaluated under a reflected light ZEISS microscope with a 50× magnification objective.

Findings

The results show that FDM technology with the used equipment results in a rough surface and loose dimensional accuracy. The SLA printer produced a smoother surface, but resulted in the distortion of thin features (<1 mm). MJ printers, on the other hand, produced comparable surface roughness and dimensional accuracy. However, ProJet MJP 3600 produced sharper edges when compared to the Objet 260 that produced round edges.

Originality/value

This paper, for the first time, provides a comprehensive comparison of three different commonly used 3DP technologies in terms of their dimensional capability and surface roughness without farther post-processing. Thus, it offers a reliable guideline for design consideration and printer selection based on the target application.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 June 2023

Farid Salari, Paolo Bosetti and Vincenzo M. Sglavo

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design…

Abstract

Purpose

Particles bed binding by selective cement activation (SCA) method is a computer-aided manufacturing (CAM) technique used to produce cementitious elements. A computer-aided design file is sliced to generate G-codes before printing. This paper aims to study the effect of key input parameters for slicer software on the final properties of printed products.

Design/methodology/approach

The one factor at a time (OFAT) methodology is used to investigate the impact of selected parameters on the final properties of printed specimens, and the causes for the variations in outcomes of each variable are discussed.

Findings

Finer aggregates can generate a more compact layer, resulting in a denser product with higher strength. Fluid pressure is directly determined by voxel rate (rV); however, high pressures enable better fluid penetration control for fortified products; for extreme rVs, residual voids in the interfaces between successive layers and single-line primitives impair mechanical strength. It was understood that printhead movement along the orientation of the parts in the powder bed improved the mechanical properties.

Originality/value

The design of experiment (DOE) method assesses the influence of process parameters on various input printing variables at the same time. As the resources are limited, a fractional factorial plan is carried out on a subset of a full factorial design; hence, providing physical interpretation behind changes in each factor is difficult. OFAT aids in analyzing the effect of a change in one factor on output while all other parameters are kept constant. The results assist engineers in properly considering the influence of variable variations for future DOE designs.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 March 2018

Fengyuan Liu, Srichand Hinduja and Paulo Bártolo

This paper aims to describe the control software of a novel manufacturing system called plasma-assisted bio-extrusion system (PABS), designed to produce complex multi-material and…

1199

Abstract

Purpose

This paper aims to describe the control software of a novel manufacturing system called plasma-assisted bio-extrusion system (PABS), designed to produce complex multi-material and functionally graded scaffolds for tissue engineering applications. This fabrication system combines multiple pressure-assisted and screw-assisted printing heads and plasma jets. Control software allows the users to create single or multi-material constructs with uniform pore size or pore size gradients by changing the operation parameters, such as geometric parameters, lay-down pattern, filament distance, feed rate and layer thickness, and to produce functional graded scaffolds with different layer-by-layer coating/surface modification strategies by using the plasma modification system.

Design/methodology/approach

MATLAB GUI is used to develop the software, including the design of the user interface and the implementation of all mathematical programing for both multi-extrusion and plasma modification systems.

Findings

Based on the user definition, G programing codes are generated, enabling full integration and synchronization with the hardware of PABS. Single, multi-material and functionally graded scaffolds can be obtained by manipulating different materials, scaffold designs and processing parameters. The software is easy to use, allowing the efficient control of the PABS even for the fabrication of complex scaffolds.

Originality/value

This paper introduces a novel additive manufacturing system for tissue engineering applications describing in detail the software developed to control the system. This new fabrication system represents a step forward regarding the current state-of-the-art technology in the field of biomanufacturing, enabling the design and fabrication of more effective scaffolds matching the mechanical and surface characteristics of the surrounding tissue and enabling the incorporation of high number of cells uniformly distributed and the introduction of multiple cell types with positional specificity.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2764

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 49