Search results

1 – 10 of 359
Article
Publication date: 1 March 2021

Viju Subramoniapillai and G. Thilagavathi

The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several…

Abstract

Purpose

The most widely recycled plastic in the world is recycled polyethylene terephthalate (rPET). To minimize the environmental related issues associated with synthetic fibers, several researchers have explored the potential use of recycled polyester fibers in developing various technical textile products. This study aims to develop needle-punched nonwoven fabrics from recycled polyester fibers and investigate its suitability in oil spill cleanup process.

Design/methodology/approach

According to Box and Behnken factorial design, 15 different needle-punched nonwoven fabrics from recycled polyester fibers were prepared by changing the parameters, namely, needle punch density, needle penetration depth and fabric areal weight. Several featured parameters such as oil sorption, oil retention, oil sorption kinetics, wettability and reusability performance were systematically elucidated.

Findings

The maximum oil sorption of recycled nonwoven polyester is found to be 24.85 g/g and 20.58 g/g for crude oil and vegetable oil, respectively. The oil retention is about 93%–96% in case of crude oil, whereas 87%–91% in case of vegetable oil. Recycled polyester nonwoven possesses good hydrophobic–oleophilic properties with static contact angle of 138° against water, whereas 0° against crude oil and vegetable oil. The reusability test results indicate that recycled polyester nonwoven fabric can be used several times because of its reusability features.

Originality/value

There is no detailed study on the oil sorption features of needle-punched nonwoven fabrics developed from recycled polyester fibers. This study is expected to help in developing fabrics for oil spill cleanups.

Details

Research Journal of Textile and Apparel, vol. 25 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 22 June 2018

Shariful Islam and Shaikh Md. Mominul Alam

The purpose of this paper is to investigate the acoustic properties of needle-punched nonwovens produced of bamboo, banana and hemp fibers blended with polyester (PET) and…

Abstract

Purpose

The purpose of this paper is to investigate the acoustic properties of needle-punched nonwovens produced of bamboo, banana and hemp fibers blended with polyester (PET) and polypropylene (PP) as they are supportive enough to minimize sound transmission inside the automobiles.

Design/methodology/approach

Textile materials like bamboo, banana and hemp blended with PET and PP in the ratio of 35:35:30 were applied to make the web. The needle-punching technique was applied to each web for three times to form a full nonwoven textile composite. The concept of PET/PP blend with natural fibers was to enhance the consistency and thermoform propensity of the composites. When nonwoven textile composites were placed in between a sound source and a receiver, they absorbed annoying sound by dissolving sound wave energy. Sound absorption coefficient was measured by the impedance tube method as per ASTM C384 Standard. Bamboo/PET/PP composite showed the highest absorption coefficient in most of the frequencies.

Findings

Physical and comfort properties were tested for the composites and it was noticed that bamboo/PET/PP composites with its compressed structure showed a better stiffness value, lesser thermal conductivity, lesser air permeability, better absorption coefficient and highest sound transmission loss compared to other two composites. At 840 Hz, the absorption coefficient of bamboo/PET/PP remained in satisfactory level but it was inferior by 20 percent in banana/PET/PP. Conversely at more frequencies like 1,680 Hz, there was a decrease from the target level in all the nonwovens composites, which could be enhanced by raising the thickness of the nonwovens, and all these properties of bamboo/PET/PP were considered appropriate for controlling noise inside the vehicles.

Practical implications

This research will provide facilities to decrease noise inside the vehicles. It will improve the apparent value of the automobiles to the traveler and also provide a sensible goodwill to the manufacturer.

Originality/value

This research will open several ways for the development of different nonwoven composites, particularly for the sound absorption and will open possible ways for the scholars to further study in this field.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 November 2016

Yalcin Yesil and Gajanan S. Bhat

Recently, the usage of melt blown products in many areas has increased. In melt blown process, generally polymers have been used. There are a variety of polymers. Characteristics…

Abstract

Purpose

Recently, the usage of melt blown products in many areas has increased. In melt blown process, generally polymers have been used. There are a variety of polymers. Characteristics of melt blown nonwovens have changed significantly depending on the polymer type. Also, there are several parameters such as die temperature, die-to-collector distance (DCD), air pressure, etc. that modify the nonwovens in melt blown process. The purpose of this paper is to investigate the effect of these parameters on the characteristics of nonwovens made up of polyethylene (PE).

Design/methodology/approach

In the melt blown process, two die temperatures, three different die air pressures and three different DCDs were used. In total, 18 samples were produced. On produced samples, thickness, tear and tensile strengths, fiber diameter, basis weight tests were done. Also SEM observations were obtained.

Findings

It was observed that parameters studied have a significant effect on characteristics of the produced nonwoven. Fiber diameter, basis weight and strength decrease by depending on factors. Also, it was observed that temperature has an effect, but slight. This work shows that higher temperatures should be studied. Finer and uniform fiber diameter is obtained with an increase in air pressure.

Research limitations/implications

PE is becoming increasingly important in nonwovens due to its lower melting point for processing and softer feel in nonwoven products.

Practical implications

Although the use of PE in polymer-laid nonwovens, especially as bicomponent fibers, has been growing in recent years, there are limited data on their processability and performance. In this context, with the availability of relatively higher melt flow rate PE, understanding the processability and structure and properties of the melt blown PE is very helpful in designing and developing the right products. This research was conducted to evaluate the processability of the PE resin using a typical PP melt blowing pilot line and to determine the structure and properties of the formed webs.

Originality/value

PE has superior properties such as excellent chemical resistance, good fatigue, wear resistance and higher impact strength. Also, PE provides good resistance to organic solvents, degreasing agents and electrolytic attack. PE has lower working temperatures than polypropylene, is light in weight, resistant to staining and has low moisture absorption rates. Thus, this study provides important contributions to the area since there are no data reported about the effect of various processing parameters on the structure and properties of PE melt blown nonwovens.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 November 2015

Mahmut Kayar, Suleyman Ilker Mistik and Deniz Inan

– The purpose of this paper is to investigate the factors effecting ultrasonic seam tensile properties.

Abstract

Purpose

The purpose of this paper is to investigate the factors effecting ultrasonic seam tensile properties.

Design/methodology/approach

In this study, 100 percent polypropylene and 100 percent polyester spunbond and meltblown nonwoven fabrics were sewn by using ultrasonic sewing machine with different rollers which have two, three and four rows. Seam tensile properties of the sewn nonwoven fabrics were investigated. Four-Level Nested Anova Design was applied to the data by using Minitab 15 software program.

Findings

Higher seam strength values were obtained by using four rows roller, PP fiber, spunbond fabric and 50 g/m2 fabric area density for all nonwoven fabrics. Statistical significance was found between fabric area density, roller rows and seam tensile strength properties and between fabric type, roller rows and seam elongation at break values.

Originality/value

When the authors look at the studies related to ultrasonic sewing, several researchers studied on welding parameters of ultrasonic sewing but very limited studies were performed on assembling of nonwoven fabrics with ultrasonic sewing. Therefore effect of production methods of nonwoven fabrics on the properties of ultrasonic sewing such as seam strength and elongation at break should be investigated.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 1998

S.J. Kim, K.H. Kim, D.H. Lee and G.H. Bae

Functions of interlinings to the shell fabric are to improve the garment formability for a beautiful silhouette and elastic potential to the deformed fabric during wearing, and…

Abstract

Functions of interlinings to the shell fabric are to improve the garment formability for a beautiful silhouette and elastic potential to the deformed fabric during wearing, and also are to enhance appearance and wearing properties of the garment. The objective of this study is to analyse suitability of nonwoven fusible interlining to the thin worsted fabric with various fabric structural parameters. For the purpose of this study, specimens with various weft yarn twists and weft densities of thin worsted fabrics are prepared. Three nonwoven fusible interlinings with different structure which were made of nylon/polyester were used for adhering to the thin worsted fabrics. Mechanical properties of these 24 adhesive fabrics fused with three nonwoven interlinings are measured by the KES‐FB System for analysing the suitability of nonwoven fusible interlinings to the thin worsted fabrics with various fabric structural parameters. Some mechanical properties of fused fabrics are analysed and discussed with repetition of dry cleaning of adhesive fabrics for performing effects of dry cleaning to the suitability of nonwoven fusible interlining to the shell fabrics.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2002

Hiroko Yokura and Masako Niwa

The objective hand evaluation of the top sheet materials used for disposable diapers has been investigated, with consideration given to aspects of both dermatitis and comfort. The…

Abstract

The objective hand evaluation of the top sheet materials used for disposable diapers has been investigated, with consideration given to aspects of both dermatitis and comfort. The objective hand evaluation system for men's suiting has been applied to assess the hand of top sheet nonwovens. The subjective hand of the top sheet nonwovens, separated from the disposable diaper product, was assessed by female students. It became clear that the hand of the top sheet nonwovens could be predicted by the equation developed for men's suiting, for which the calculated error was within the range of the standard deviation of the subjective hand value of each product. The correlations between the hand quality of the diaper and the mechanical properties of its top sheet nonwoven were also examined. The diapers with high total hand value (THV) of their top sheet nonwovens were estimated to have good hand under both dry and wet conditions.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 July 2018

Ravi Kumar Jain, Sujit Kumar Sinha and Apurba Das

Spunlacing is a promising nonwoven technology for the production of fabric with good handle and better structural integrity. Structural parameters such as pore size, thickness and…

Abstract

Purpose

Spunlacing is a promising nonwoven technology for the production of fabric with good handle and better structural integrity. Structural parameters such as pore size, thickness and number of binding point/entanglement between fibres are decisive for good mechanical and comfort properties of nonwoven fabrics. This study aims to focus on the effect of different process parameters on the structural change in spunlace fabrics.

Design/methodology/approach

Spunlacing is purely a mechanical bonding technology where high-speed jets of water strike a web to entangle the fibres. Different spunlace nonwoven structures were produced by varying processing parameters such as waterjet pressure, delivery speed, web mass and web composition as per four-factor, three-level Box–Behnken design. The effect of these parameters on the structural arrangement was studied using scanning electron microscopy. An attempt has also been made to study the changes in pore geometry and thickness of the fabrics by using response surface methodology with backward elimination.

Findings

Significant structural changes were observed with variation in water pressure, web mass and web composition. The test results showed that fabric produced at higher waterjet pressure has lower mean pore diameter and lower thickness. The variation in mean pore diameter and mean thickness due to waterjet pressure is around 26 and 34 per cent, respectively, at 95 per cent significance level. The web composition and web mass also significantly influence the mean pore diameter and thickness at 95 per cent significance level. There is a strong positive correlation (r = 0.523) between mean air permeability and mean pore diameter of fabric, and this correlation is significantly linear. A strong negative correlation (r = −0.627) is found between weight and air permeability of fabric.

Research limitations/implications

The delivery speed failed to show any significant effect; this is in contrary to the general expectation.

Originality/value

The effect of concurrent variation in waterjet pressure, web mass, delivery speed and web composition on the structure of spunlace nonwoven is studied, which was not reported in the literature. The effect of web composition on pore diameter of spunlace nonwoven is interesting finding. This study is expected to help in designing the spunlace nonwoven as per end uses and specifically for apparel application.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 May 2018

Gnanauthayan G., Rengasamy R.S. and Vijayakumar Kothari

This paper aims to deal with the thermal resistance of multilayer nonwovens. The effect of fibre denier, cross-sectional shape and positioning within the layers were analysed with…

Abstract

Purpose

This paper aims to deal with the thermal resistance of multilayer nonwovens. The effect of fibre denier, cross-sectional shape and positioning within the layers were analysed with respect to the thermal resistance. Moreover, effect of compression on thermal resistance of the multilayer nonwoven structure have also be studied.

Design/methodology/approach

The study involves multiple layering of thermal bonded nonwoven webs and the effect of fibre denier and positioning of different nonwovens from the hot plate. To avoid the increase in thermal resistance because of the air gaps between layers, the nonwovens were enclosed within an acrylic frame to compress them to a thickness of 12 mm. Compressional behaviour of the nonwovens were tested at a rate of 5 mm/min with peak compressive load of 50 N. Multilayer nonwoven assemblies were tested for thermal resistance with compressive pressure of 3.5 gf/cm2 and compared with that tested at zero pressure.

Findings

In the study, three-layered nonwoven structure, provided better thermal resistance than their single component counterparts. The structural characteristic of the multilayer nonwovens affected the conductive, convective and the radiative heat transfer. In a multi-layer nonwoven, the top most layer should have the finest fibre as possible. Second preference may be given to the middle and followed by bottom layers in terms of fibre fineness. However, fine solid fibres performed poorly in terms of compression and recovery resulting in poor thermal resistance under compressive load.

Originality/value

The experimental approach of controlling thickness while evaluating the thermal resistance will help in nullify the effect of air gaps between the layer interface, thus focussing on the effect of fibre denier and the positioning of nonwovens. This paper also discusses the unique properties of fine solid fibre and hollow fibres and their role in providing better thermal insulation for extreme cold weather applications.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 May 2023

Chunling Liang, Ting Zou, Yan Zhang, Yuanyuan Li and Ping Wang

This paper aims to design a composite, aiming to improve the static puncture resistance through polyurethane impregnated treatment with five concentration gradients.

Abstract

Purpose

This paper aims to design a composite, aiming to improve the static puncture resistance through polyurethane impregnated treatment with five concentration gradients.

Design/methodology/approach

The relationship between polyurethane concentration, the number of polyester nonwovens, component fiber type (filament or staple) and the static puncture resistance is explored respectively and elaborately.

Findings

This study provides a new perspective to design flexible composites with better static puncture resistance, feasible preparation process as well as low cost.

Originality/value

The results show that the static puncture resistance of nonwovens impregnated by polyurethane is improved obviously. Meanwhile the puncture strength-T of nonwovens increases first and then decreases with the increase of the number of layers, and the maximum puncture strength-T is found at 20 layers. Moreover, the composite with filaments illustrates better mechanical resistance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 359