Search results

1 – 10 of 44
Article
Publication date: 6 April 2021

Yihui Gong, Lin Li, Shengbo Qi, Changbin Wang and Dalei Song

A novel proportional integral derivative-extended state disturbance observer-based control (PID-ESDOBC) algorithm is proposed to solve the nonlinear hydrodynamics, parameters…

Abstract

Purpose

A novel proportional integral derivative-extended state disturbance observer-based control (PID-ESDOBC) algorithm is proposed to solve the nonlinear hydrodynamics, parameters perturbation and external disturbance in yaw control of remote operated vehicles (ROVs). The effectiveness of PID-ESDOBC is verified through the experiments and the results indicate that the proposed method can effectively track the desired attitude and attenuate the external disturbance.

Design/methodology/approach

This study fully investigates the hydrodynamic model of ROVs and proposes a control-oriented hydrodynamic state space model of ROVs in yaw direction. Based on this, this study designs the PID-ESDOBC controller, whose stability is also analyzed through Kharitonov theorem and Mikhailov criterion. The conventional proportional-integral-derivative (PID) and active disturbance rejection control (ADRC) are compared with our method in our experiment.

Findings

In this paper, the authors address the nonlinear hydrodynamics, parameters perturbation and external disturbance problems of ROVs with multi-vector propulsion by using PID-ESDOBC control scheme. The advantage is that the nonlinearities and external disturbance can be estimated accurately and attenuate promptly without requiring the precise model of ROVs. Compared to PID and ADRC, both in overshoot and settling time, the improvement is 2X on average compared to conventional PID and ADRC in the pool experiment.

Research limitations/implications

The delays occurred in the control process can be solved in the future work.

Practical implications

The attitude control is a kernel problem for ROVs. A precise kinematic and dynamic model for ROVs and an advanced control system are the key factors to obtain the better maneuverability in attitude control. The PID-ESDOBC method proposed in this paper can effectively attenuate nonlinearities and external disturbance, which leads to a quick response and good tracking performance to baseline controller.

Social implications

The PID-ESDOBC algorithm proposed in this paper can be ensure the precise and fast maneuverability in attitude control of ROVs or other underwater equipment operating in the complex underwater environment. In this way, the robot can better perform undersea work and tasks.

Originality/value

The dynamics of the ROV and the nominal control model are investigated. A novel control scheme PID-ESDOBC is proposed to achieve rapidly yaw attitude tracking and effectively reject the external disturbance. The robustness of the controller is also analyzed which provides parameters tuning guidelines. The effectiveness of the proposed controller is experimental verified with a comparison by conventional PID, ADRC.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 January 2015

S.T. Zhan, W.X, Yan, Z. Fu, Gen Pan and Y.Z. Zhao

– This paper aims to present a robust design approach to realize disturbance attenuation for a yaw – pitch gimballed system subject to actuator saturation and disturbances.

Abstract

Purpose

This paper aims to present a robust design approach to realize disturbance attenuation for a yaw – pitch gimballed system subject to actuator saturation and disturbances.

Design/methodology/approach

To minimize the impacts of disturbances in the presence of saturation nonlinearity and acquire desired response performance, the control approach is of double closed-loop configuration. State feedback controllers are synthesized via convex optimization and used to stabilize the inner loops; robust controllers are synthesized via mixed H optimization and used to stabilize the outer loops.

Findings

It is shown through performance simulations that the proposed control scheme is effective in terms of command following, stability and disturbance attenuation.

Practical implications

The presented robust control approach provides a theoretical method to facilitate designing a stable servo control loop for a yaw – pitch gimballed seeker.

Originality/value

This paper supplies an effective way of addressing stabilization problem induced from actuator saturation and system uncertainties.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear…

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 April 2021

Nigar Ahmed, Ajeet kumar Bhatia and Syed Awais Ali Shah

The aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter…

Abstract

Purpose

The aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter (LPF).

Design/methodology/approach

For designing a RADAC technique, the sliding mode control (SMC) method is used. Since the standard method of SMC exhibits a chattering phenomenon in the controller, a multilayer sliding mode surface is designed for avoiding the chattering. In addition, to attenuate the unwanted uncertainties and disturbances (UUDs), the techniques of EHGO and LPF are deployed. Besides acting as a patch for disturbance attenuation, the EHGO design estimates the state variables. To investigate the stability and effectiveness of the designed control algorithm, the stability analysis followed by the simulation study is presented.

Findings

The major findings include the design of a chattering-free RADAC controller based on the multilayer sliding mode surface. Furthermore, a criterion of integrating the LPF scheme within the EHGO scheme is also developed to attenuate matched and mismatched UUDs.

Practical implications

In practice, the quadrotor flight is opposed by different kinds of the UUDs. And, the model of the quadrotor is a highly nonlinear underactuated model. Thus, the dynamics of the quadrotor model become more complex and uncertain due to the additional UUDs. Hence, it is necessary to design a robust disturbance attenuation technique with the ability to estimate the state variables and attenuate the UUDs and also achieve the desired control objectives.

Originality/value

Designing control methods to attenuate the disturbances while assuming that the state variables are known is a common practice. However, investigating the uncertain plants with unknown states along with the disturbances is rarely taken in consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the UUDs as well as investigate a criterion to reduce the chattering incurred in the controller due to the standard SMC algorithm.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 June 2014

Xiangjian Chen, Di Li, Zhijun Xu and Yue Bai

Micro aerial vehicle is nonlinear plant; it is difficult to obtain stable control for MAV attitude due to uncertainties. The purpose of this paper is to propose one robust stable…

Abstract

Purpose

Micro aerial vehicle is nonlinear plant; it is difficult to obtain stable control for MAV attitude due to uncertainties. The purpose of this paper is to propose one robust stable control strategy for MAV to accommodate system uncertainties, variations, and external disturbances.

Design/methodology/approach

First, by employing interval type-II fuzzy neural network (ITIIFNN) to approximate the nonlinearity function and uncertainty functions in the attitude angle dynamic model of micro aircraft vehicle (MAV). Then, the Lyapunov stability theorem is used to testify the asymptotic stability of the closed-loop system, the parameters of the ITIIFNN and gain of sliding mode control can be tuned on-line by adaptive laws based on Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system.

Findings

The validity of the proposed control method has been verified through real-time experiments. The experimental results show that the performance of interval type-II fuzzy neural network based gain adaptive sliding mode controller (GASMC-ITIIFNN) is significantly improved compared with conventional adaptive sliding mode controller (CASMC), type-I fuzzy neural network based sliding mode controller (GASMC-TIFNN).

Practical implications

This approach has been used in one MAV, the controller works well, and which could guarantee the MAV control system with good performances under uncertainties, variations, and external disturbances.

Originality/value

The main original contributions of this paper are: the proposed control scheme makes full use of the nominal model of the MAV attitude control model; the overall closed-loop control system is globally stable demonstrated by Lyapunov stable theory; the tracking error can be asymptotically attenuated to a desired small level around zero by appropriate chosen parameters and learning rates; and the MAV attitude control system based on GASMC-ITIIFNN controller can achieve favourable tracking performance than GASMC-TIFNN and CASMC.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 16 November 2023

Abdeldjabar Benrabah, Farid Khoucha, Ali Raza and Mohamed Benbouzid

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith…

Abstract

Purpose

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith predictor active disturbance rejection control (SP-ADRC) associated with a speed/position estimator.

Design/methodology/approach

The estimator consists of a sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the permanent magnet synchronous generator (PMSG) rotor position and speed. At the same time, the SP-ADRC is applied to the speed control loop of the variable-speed WECS control system to adapt strongly to dynamic characteristics under parameter uncertainties and disturbances.

Findings

Numerical simulations are conducted to evaluate the speed tracking performances under various wind speed profiles. The results show that the proposed sensorless speed control improves the accuracy of rotor speed and position estimation and provides better power tracking performance than a regular ADRC controller under fast wind speed variations.

Practical implications

This paper offers a new approach for designing sensorless, robust control for PMSG-based WECSs.

Originality/value

A new sensorless, robust control is proposed to improve the stability and tracking performance of PMSG-based WECSs. The SP-ADRC control attenuates the effects of parameter uncertainties and disturbances and eliminates the time-delay impact. The sensorless control design based on SMO and PLL improves the accuracy of rotor speed estimation and reduces the chattering problem of traditional SMO. The obtained results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 March 2019

Jian Zhong Qiao, Hao Wu, Yukai Zhu, Jianwei Xu and Wenshuo Li

This paper is concerned with the repetitive trajectory tracking control for space manipulators under model uncertainties and vibration disturbances.

Abstract

Purpose

This paper is concerned with the repetitive trajectory tracking control for space manipulators under model uncertainties and vibration disturbances.

Design/methodology/approach

The model uncertainties and link vibration of manipulators will degrade the tracking performance of space manipulators; in this paper, a new hybrid control scheme that consists of a composite hierarchical anti-disturbance controller and an iterative learning controller is developed to solve this problem.

Findings

The composite hierarchical controller can effectively attenuate model uncertainties and reject vibration disturbances, whereas the iterative learning controller is able to improve the tracking accuracy for repetitive reference trajectory.

Originality/value

The proposed scheme compensates for the shortcomings of iterative learning control which can only deal with repetitive disturbances, ensuring the accuracy and repeatability of space manipulators under model uncertainties and random disturbances.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 February 2024

Muhammad Nabeel Siddiqui, Xiaolu Zhu, Hanad Rasool, Muhammad Bilal Afzal and Nigar Ahmed

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to…

Abstract

Purpose

The purpose of this paper is to design an output-feedback algorithm based on low-power observer (LPO), robust chattering-free controller and nonlinear disturbance observer (DO) to achieve trajectory tracking of quadrotor in the Cartesian plane.

Design/methodology/approach

To achieve trajectory tracking control, firstly the decoupled rotational and translational model of quadrotor are modified by introducing backstepped state-space variables. In the second step, robust integral sliding mode control is designed based on the proportional-integral-derivative (PID) technique. In the third step, a DO is constructed. In next step, the measurable outputs, i.e. rotational and translational state variables, are used to design the LPO. Finally, in the control algorithm all state variables and its rates are replaced with its estimates obtained using the state-observer.

Findings

The finding includes output-feedback control (OFC) algorithm designed by using a LPO. A modified backstepping model for rotational and rotational systems is developed prior to the design of integral sliding mode control based on PID technique. Unlike traditional high-gain observers (HGO), this paper used the LPO for state estimation of quadrotor systems to solve the problem of peaking phenomenon in HGO. Furthermore, a nonlinear DO is designed such that it attenuates disturbance with unknown magnitude and frequency. Moreover, a chattering reduction criterion has been introduced to solve the inherited chattering issue of controllers based on sliding mode technique.

Practical implications

This paper presents input and output data-driven model-free control algorithm. That is, only input and output of the quadrotor model are required to achieve the trajectory tracking control. Therefore, for practical implementation, the number of on-board sensor is reduced.

Originality/value

Although extensive research has been done for designing OFC algorithms for quadrotor, LPO has never been implemented for the rotational and translational state estimations of quadrotor. Furthermore, the mathematical model of rotational and translational systems is modified by using backstepped variables followed by the controller designed using PID and integral sliding mode control technique. Moreover, a DO is developed for attenuation of disturbance with unknown bound, magnitude and frequency.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2009

Weiyue Chen and Wuxing Jing

The purpose of this paper is to investigate the problem of the initial attitude detumbling and acquisition for micro‐satellite using geomagnetism with the aid of the pitch…

Abstract

Purpose

The purpose of this paper is to investigate the problem of the initial attitude detumbling and acquisition for micro‐satellite using geomagnetism with the aid of the pitch momentum bias, and the application of the feedback linearization method, H and μ‐synthesize control theory in the robust attitude acquisition controller design.

Design/methodology/approach

The pitch flywheels establish the momentum bias state in the beginning of the detumbling stage and keep the momentum bias state thereafter. The geomagnetic change rate feedback detumbling controller is used to detumble the micro‐satellite and the gyroscope rigidity is utilized to capture orbital negative normal orientation in the detumbling and attitude acquisition phase. Feedback linearization method is adopted to obtain the linear attitude dynamics. Based on the feedback linearization model, a quasi proportion differential (PD) controller is designed, meanwhile H and μ‐synthesis control theories are adopted to synthesis the robust attitude acquisition controllers.

Findings

The pitch momentum bias‐aided attitude detumbling and acquisition method make the capture of the orbital negative normal orientation faster and more accurate than the classical initial operation process. Quasi PD and H have greater robustness than the classical PD attitude acquisition controller in normal geomagnetic case; quasi PD and μ‐synthesis have greater robustness than the classical PD attitude acquisition controller in magnetic storm case.

Originality/value

Provides pitch momentum bias‐aided attitude detumbling and acquisition method for the micro‐satellite and the robust attitude acquisition controller design technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 6 August 2018

Li Pan, Guanjun Bao, Fang Xu and Libin Zhang

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external…

Abstract

Purpose

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external disturbances. The controller is used to achieve both stringent trajectory tracking, accurate parameter estimations and robustness against external disturbances.

Design/methodology/approach

The controller is designed based on the combination of sliding mode control, adaptive and robust controls and hence has good adaptation and robustness abilities to parametric variations and uncertainties. The unknown parameter estimates are updated online based on a discontinuous projection adaptation law. The robotic dynamics is first formulated in both joint spaces and workspace of the robot’s end-effector. Then, the design procedure of the adaptive robust sliding mode tracking controller and the parameter update law is detailed.

Findings

Comparative tests are also conducted to verify the effectiveness of the proposed controller, which show that the proposed controller achieves significantly better dynamic trajectory tracking performances as compared with conventional proportional derivative controller and sliding mode controller under the same conditions.

Originality/value

This is a new innovation for industrial assembly robot to improve assembly automation.

1 – 10 of 44