Search results

1 – 10 of over 3000
Article
Publication date: 13 December 2017

Xiao Tu, Yunfei Zhou, Pu Zhao and Xin Cheng

This paper aims to present a method for improving the state estimation of a robot in the presence of noise measurement, which can improve the performance of the robot controller.

Abstract

Purpose

This paper aims to present a method for improving the state estimation of a robot in the presence of noise measurement, which can improve the performance of the robot controller.

Design/methodology/approach

In this work, a novel nonlinear tracking differentiator (NTD) was formulated to solve the problems of phase lag, low stability and amplitude attenuation faced by traditional tracking differentiators, which can be used for the state estimation of a robot. Based on the user-defined function stu() with linear and nonlinear characteristics, the authors establish a new acceleration function of NTD and confirm its global asymptotic stability by using the Lyapunov method and the system equivalence method. Phase plane analysis shows that the origin is its stable nodal point or focus point and uncovers the basic constraint conditions for parameter regulation. In addition, the convergence property and robustness performance against noises are studied by describing function method.

Findings

Comparative simulations, robot state estimation experiments and joint trajectory tracking experiments have indicated that NTD proposed integrates tracking rapidness, accuracy and transitional stability and has high approximation and filtering effects on generalized derivatives of the signal, which contribute to an excellent performance of robot controller in stability and response speed in practice.

Originality/value

The main contribution of this paper lies in the design of a novel NTD, which successfully improves the state estimation of a robot joint in noisy surroundings, the tracking performance of robot controller and the stability of the system.

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2016

Jun He, Minzhou Luo, Xinglong Zhang, Marco Ceccarelli, Jian Fang and Jianghai Zhao

This paper aims to present an adaptive fuzzy sliding mode controller with nonlinear observer (AFSMCO) for the redundant robotic manipulator handling a varying payload to achieve a…

Abstract

Purpose

This paper aims to present an adaptive fuzzy sliding mode controller with nonlinear observer (AFSMCO) for the redundant robotic manipulator handling a varying payload to achieve a precise trajectory tracking in the task space. This approach could be applied to solve the problems caused by the dynamic effect of the varying payload to robotic system caused by model uncertainties.

Design/methodology/approach

First, a suitable observer using the recursive algorithm is presented for an accurate estimation of external disturbances caused by a variable payload. Second, the adaptive fuzzy logic is designed to approximate the parameters of the sliding mode controller combined with nonlinear observer (SMCO) to avoid chattering in real time. Moreover, Lyapunov theory is applied to guarantee the stability of the proposed closed-loop robotic system. Finally, the effectiveness of the proposed control approach and theoretical discussion are proved by simulation results on a seven-link robot and demonstrated by a humanoid robot platform.

Findings

The varying payload leads to large variations in the dynamics of the manipulator and the tracking error. To achieve high-precision position tracking, nonlinear observer was introduced to feed into the sliding mode control (SMC) which had improved the ability to resist the external disturbance. In addition, the chattering caused by the SMC was eliminated by recursively approximating the switching gain with the usage of adaptive fuzzy logic. Therefore, a distributed control strategy solves the problems of an SMC implementation in improving its tracking performance and eliminating the chattering of the system control.

Originality/value

The AFSMCO is proposed for the first time and used to control the redundant robotic manipulator that handles the varying payload. The proposed control algorithm possesses better robustness and higher precision for the trajectory tracking than classical SMC.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2023

Shengqian Li and Xiaofan Zhang

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to…

Abstract

Purpose

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.

Design/methodology/approach

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.

Findings

The simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.

Originality/value

The seam gets plumper and smoother, with better continuity and no undercut phenomenon.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 March 2021

Aws Abdulsalam Najm, Ibraheem Kasim Ibraheem, Amjad J. Humaidi and Ahmad Taher Azar

The hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree…

Abstract

Purpose

The hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree freedom (DoF) quadrotor system with the existence of exogenous disturbances and system uncertainties.

Design/methodology/approach

IADRC units are designed for the altitude and attitude systems, while NLPID controllers are designed for the xy position system on the quadrotor nonlinear model. The proposed controlling scheme is implemented using MATLAB/Simulink environment and is compared with the traditional PID controller and NLPID controller.

Findings

Different tests have been done, such as step reference tracking, hovering mode, trajectory tracking, exogenous disturbances and system uncertainties. The simulation results showed the demonstrated performance and stability gained by using the proposed scheme as compared with the other two controllers, even when the system was exposed to different disturbances and uncertainties.

Originality/value

The study proposes an NLPID-IADRC scheme to stabilize the motion of the quadrotor system while tracking a specified trajectory in the presence of exogenous disturbances and parameter uncertainties. The proposed multi-objective Output Performance Index (OPI) was used to obtain the optimum integrated time of the absolute error for each subsystem, UAV quadrotor system energy consumption and for minimizing the chattering phenomenon by adding the integrated time absolute of the control signals.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 26 August 2014

Cai Gaohua, Song Jianmei and Chen Xianxiang

The purpose of this paper is to design a robust angle-of-attack (AOA) tracking control system for the hypersonic reentry vehicle (HRV) based on the linear parameter varying (LPV…

Abstract

Purpose

The purpose of this paper is to design a robust angle-of-attack (AOA) tracking control system for the hypersonic reentry vehicle (HRV) based on the linear parameter varying (LPV) theory, as the aerodynamic coefficients of the hypersonic vehicle vary quickly during the reentry phase.

Design/methodology/approach

First, longitudinal moment trim is done along the desired flight trajectory. The linearized system at each trim point is built and the dynamic characteristics analysis is made. Then the LPV control law with parameter-dependent quadratic Lyapunov function (PDQLF-LPV) is applied to design the AOA tracking autopilot at each trim point. Frequency performance of the autopilot is assessed and the step response simulation is conducted to validate the effectiveness of the control system. Finally, actual AOA command tracking simulations based on the time-varying nonlinear model are carried out to test the correctness and robustness of the PDQLF-LPV autopilot.

Findings

Analysis results demonstrate that the PDQLF-LPV control system can track the AOA command perfectly during the whole flight envelop with dynamics parameter variation or disturbances, which indicates that it is effective to integrate the PDQLF-LPV control theory with a parameter-varying reference model for control system design of HRV.

Originality/value

A reference model with varying parameters is utilized to guarantee the transient performance of the autopilot, and induced L2-norm analysis is introduced to describe and guarantee the robust stability of the autopilot.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 June 2021

Nigar Ahmed and Mou Chen

The purpose of this research paper is to design a disturbance observer-based control based on the robust model reference adaptive backstepping sliding-mode control for attitude…

Abstract

Purpose

The purpose of this research paper is to design a disturbance observer-based control based on the robust model reference adaptive backstepping sliding-mode control for attitude quadrotor model subject to uncertainties and disturbances.

Design/methodology/approach

To estimate and reject the disturbance, a disturbance observer is designed for the exogenous disturbances with perturbation while a control criterion is developed for the tracking of desired output. To achieve the control performance, backstepping and sliding-mode control techniques are patched together to obtain robust chattering-free controller. Furthermore, a model reference adaptive control criterion is also combined with the design of robust control for the estimation and rejection of uncertainties and unmodeled dynamics of the attitude quadrotor.

Findings

The findings of this research work includes the design of a disturbance observer-based control for uncertain attitude quadrotor system with the ability of achieving tracking control objective in the presence of nonlinear exogenous disturbance with and without perturbation.

Practical implications

In practice, the quadrotor flight is opposed by different kinds of the disturbances. In addition, being an underactuated system, it is difficult to obtain an accurate mathematical model of quadrotor for the control design. Thus, a quadrotor model with uncertainties and disturbances is inevitable. Hence, it is necessary to design a control system with the ability to achieve the control objectives in the presence of uncertainties and disturbances.

Originality/value

Designing the control methods for quadrotor control without uncertainties and disturbances is a common practice. However, investigating the uncertain quadrotor plant in the presence of nonlinear disturbances is rarely taken into consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the uncertainties and disturbances as well as investigate a control algorithm to achieve tracking performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2017

Yosra Rkhissi-Kammoun, Jawhar Ghommam, Moussa Boukhnifer and Faiçal Mnif

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed…

Abstract

Purpose

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed for an IM drive by using the backstepping design associated with the Robust Integral Sign of the Error (RISE) technique.

Design/methodology/approach

First, the rotor field-oriented IM dynamic model is derived. Then, a RISE-backstepping approach is proposed to compensate for the load torque disturbance under the assumptions that the disturbances are C2 class functions with bounded time derivatives.

Findings

The numerical validation results have presented good control performances in terms of speed and flux reference tracking. It is also robust against load disturbances rejection and IM parameters variation compared to the conventional Field-Oriented Control design. Besides, the asymptotic stability and the boundedness of the closed-loop signals is guaranteed in the context of Lyapunov.

Originality/value

A very relevant strategy based on a conjunction of the backstepping design with the RISE technique is proposed for an IM drive. The approach remains simple and can be scaled to different applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 May 2010

Zhu Hong‐Yu

The purpose of this paper is to develop a novel nonlinear H control approach for the nonlinear multivariable attitude tracking of rigid spacecraft.

Abstract

Purpose

The purpose of this paper is to develop a novel nonlinear H control approach for the nonlinear multivariable attitude tracking of rigid spacecraft.

Design/methodology/approach

Based on the transformation of the attitude tracking problem into quaternion error stabilization, the feedback control law is developed by using the normal matrix control theory with the inverse‐additive perturbation description of systems uncertainties, and the Hamilton‐Jacobi‐Isaacs (HJI) partial differential inequality is employed for providing the nonlinear H control criteria for the proposed control law. The onboard recursive least squares (RLS) estimation algorithm of inertia tensor is used for the further improving of the normal matrix property of the control system. The RLS algorithm is simple enough for the spacecraft borne computer. Computer simulation is performed to demonstrate the effectiveness of the control law proposed.

Findings

By the normal matrix control theory, the nonlinear H control law for attitude tracking is developed without solving the HJI inequality and with the inflight estimation of inertia, the proposed control law is adaptive and robust to the variation of mass properties, and its normality is further improved.

Research limitations/implications

The paper is limited in rigid spacecraft with slowly changing mass property. The flexible influences are not considered.

Practical implications

The paper provides an alternative to the spacecraft researchers/engineers for developing the robust attitude control law with a simple structure and self‐tuning ability.

Originality/value

The paper is the first to provide a robust control based on the normal matrix approach, the HJI inequality, and the estimation of inertia.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear…

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 3000