Search results

1 – 10 of over 6000
Article
Publication date: 5 May 2015

Clemens Gebhardt and Michael Kaliske

The purpose of this paper is to propose a path-finding algorithm to solve problems with an arbitrary load-displacement relationship which results from geometrical and material…

Abstract

Purpose

The purpose of this paper is to propose a path-finding algorithm to solve problems with an arbitrary load-displacement relationship which results from geometrical and material nonlinear models to simulate e.g. timber structures realistically.

Design/methodology/approach

A method using combined load and displacement control for the Newton method along with path-characterising measures and sub-incremention is introduced. A path-related stiffness measure is used to identify the situation when it is necessary to select the displacement control and chose the best degree of freedom as a parameter instead of the load factor. The nonlinearity index extracts information about the convergence behaviour during one incremental step. Together with the reduction of the load increments it avoids leaving the equilibrium path.

Findings

The method is discussed based on numerical examples with highly nonlinear behaviour. It is capable to solve systems with decreasing load capacity and snap-back effects.

Originality/value

The algorithm combines load and displacement control and adaptively choses the method and the corresponding degree of freedom and cares for reliable path following.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1985

R. de Borst and P. Nauta

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into…

Abstract

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into a crack strain increment. This decomposition also permits a proper combination of crack formation with other non‐linear phenomena such as plasticity and creep and with thermal effects and shrinkage. Relations are elaborated with some other crack models that are currently used for the analysis of concrete structures. The model is applied to some problems involving shear failures of reinforced concrete structures such as a moderately deep beam and an axisymmetric slab. The latter example is also of interest in that it confirms statements that ‘reduced integration’ is not reliable for problems involving crack formation and in that it supports the assertion that identifying numerical divergence with structural failure may be highly misleading.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 24 August 2018

R.C. Mittal and Sapna Pandit

The main purpose of this work is to develop a novel algorithm based on Scale-3 Haar wavelets (S-3 HW) and quasilinearization for numerical simulation of dynamical system of…

Abstract

Purpose

The main purpose of this work is to develop a novel algorithm based on Scale-3 Haar wavelets (S-3 HW) and quasilinearization for numerical simulation of dynamical system of ordinary differential equations.

Design/methodology/approach

The first step in the development of the algorithm is quasilinearization process to linearize the problem, and then Scale-3 Haar wavelets are used for space discretization. Finally, the obtained system is solved by Gauss elimination method.

Findings

Some numerical examples of fractional dynamical system are considered to check the accuracy of the algorithm. Numerical results show that quasilinearization with Scale-3 Haar wavelet converges fast even for small number of collocation points as compared of classical Scale-2 Haar wavelet (S-2 HW) method. The convergence analysis of the proposed algorithm has been shown that as we increase the resolution level of Scale-3 Haar wavelet error goes to zero rapidly.

Originality/value

To the best of authors’ knowledge, this is the first time that new Haar wavelets Scale-3 have been used in fractional system. A new scheme is developed for dynamical system based on new Scale-3 Haar wavelets. These wavelets take less time than Scale-2 Haar wavelets. This approach extends the idea of Jiwari (2015, 2012) via translation and dilation of Haar function at Scale-3.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2019

Feiyan Guo, Fang Zou, Jian Hua Liu, Qingdong Xiao and Zhongqi Wang

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of…

Abstract

Purpose

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of precise assembly for an aircraft, with revealing the nonlinear transfer mechanism of assembly error, a set of analytical methods with response to the assembly error propagation process are developed. The purpose of this study is to solve the error problems by modeling and constructing the coordination dimension chain to control the consistency of accumulated assembly errors for different assemblies.

Design/methodology/approach

First, with the modeling of basic error sources, mutual interaction relationship of matting error and deformation error is analyzed, and influence matrix is formed. Second, by defining coordination datum transformation process, practical establishing error of assembly coordinate system is studied, and the position of assembly features is modified with actual relocation error considering datum changing. Third, considering the progressive assembly process, error propagation for a single assembly station and multi assembly stations is precisely modeled to gain coordination error chain for different assemblies, and the final coordination error is optimized by controlling the direction and value of accumulated error range.

Findings

Based on the proposed methodology, coordination error chain, which has a direct influence on the property of stealthy and reliability for modern aircrafts, is successfully constructed for the assembly work of the jointing between leading edge flap component and wing component at different assembly stations.

Originality/value

Precise assembly work at different assembly stations is completed to verify methodology’s feasibility. With analyzing the main comprised error items and some optimized solutions, benefit results for the practical engineering application showing that the maximum value of the practical flush of the profiles between the two components is only 0.681 mm, the minimum value is only 0.021 mm, and the average flush of the entire wing component is 0.358 mm, which are in accordance with theoretical calculation results and can successfully fit the assembly requirement. The potential user can be the engineers for manufacturing the complex products.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 February 2012

Smitha Gopinath, Nagesh Iyer, J. Rajasankar and Sandra D'Souza

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell…

Abstract

Purpose

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell structures, with specific reference to account for the nonlinear behaviour of cracked concrete and the other associated features.

Design/methodology/approach

Geometric representation of the shell is enabled through multiple concrete layers. Composite characteristic of concrete is accounted by assigning different material properties to the layers. Steel reinforcement is smeared into selected concrete layers according to its position in the RC shell. The integrated model concurrently accounts for nonlinear effects due to tensile cracking, bond slip and nonlinear stress‐strain relation of concrete in compression. Smeared crack model having crack rotation capability is used to include the influence of tensile cracking of concrete. Propagation and change in direction of crack along thickness of shell with increase in load and deformation are traced using the layered geometry model. Relative movement between reinforcing steel and adjacent concrete is modelled using a compatible bond‐slip model validated earlier by the authors. Nonlinear iterative solution technique with imposed displacement in incremental form is adopted so that structures with local instabilities or strain softening can also be analysed.

Findings

Proposed methodologies are validated by evaluating ultimate strength of two RC shell structures. Nonlinear response of McNeice slab is found to compare well with that of experiment available in literature. Then, a RC cooling tower is analysed for factored wind loads to study its behaviour near ultimate load. Numerical validation demonstrates efficacy and usefullness of the proposed methodologies for nonlinear FEA of RC shell structures.

Originality/value

The present paper integrates critical methodologies used for behaviour modelling of concrete and reinforcement with the physical interaction among them. The study is unique by considering interaction of tensile cracking and bond‐slip which are the main contributors to nonlinearity in the nonlinear response of RC shell structures. Further, industrial application of the proposed modelling strategy is demonstrated by analysing a RC cooling tower shell for its nonlinear response. It is observed that the proposed methodologies in the integrated manner are unique and provide stability in nonlinear analysis of RC shell structures.

Article
Publication date: 19 December 2023

Rouhollah Ostadhossein and Siamak Hoseinzadeh

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the…

Abstract

Purpose

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the efficiency of finite difference and finite volume methods in solving the highly nonlinear form of Pennes’ bioheat equation.

Design/methodology/approach

One-dimensional linear and nonlinear forms of Pennes’ bioheat equation with uniform grids were used to study the behavior of human skin. The specific heat capacity, thermal conductivity and blood perfusion rate were assumed to be linear functions of temperature. The nonlinear form of the bioheat equation was solved using the Newton linearization method for the finite difference method and the Picard linearization method for the finite volume method. The algorithms were validated by comparing the results from both methods.

Findings

The study demonstrated the capacity of both finite difference and finite volume methods to solve the one-dimensional and highly nonlinear form of the bioheat equation. The investigation of human skin’s thermal behavior indicated that thermal conductivity and blood perfusion rate are the most effective properties in mitigating a surface temperature drop, while specific heat capacity has a lesser impact and can be considered constant.

Originality/value

This paper modeled the transient heat distribution within human skin in a one-dimensional manner, using temperate-dependent physical properties. The nonlinear equation was solved with two numerical methods to ensure the validity of the results, despite the complexity of the formulation. The findings of this study can help in understanding the behavior of human skin under extreme temperature conditions, which can be beneficial in various fields, including medical and engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 February 2020

P. Veeresha, D.G. Prakasha and Jagdev Singh

The purpose of this paper is to find the solution for special cases of regular-long wave equations with fractional order using q-homotopy analysis transform method (q-HATM).

Abstract

Purpose

The purpose of this paper is to find the solution for special cases of regular-long wave equations with fractional order using q-homotopy analysis transform method (q-HATM).

Design/methodology/approach

The proposed technique (q-HATM) is the graceful amalgamations of Laplace transform technique with q-homotopy analysis scheme and fractional derivative defined with Atangana-Baleanu (AB) operator.

Findings

The fixed point hypothesis considered to demonstrate the existence and uniqueness of the obtained solution for the proposed fractional-order model. To illustrate and validate the efficiency of the future technique, the authors analysed the projected nonlinear equations in terms of fractional order. Moreover, the physical behaviour of the obtained solution has been captured in terms of plots for diverse fractional order.

Originality/value

To illustrate and validate the efficiency of the future technique, we analysed the projected nonlinear equations in terms of fractional order. Moreover, the physical behaviour of the obtained solution has been captured in terms of plots for diverse fractional order. The obtained results elucidate that, the proposed algorithm is easy to implement, highly methodical, as well as accurate and very effective to analyse the behaviour of nonlinear differential equations of fractional order arisen in the connected areas of science and engineering.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2019

Faisal L. Kadri

The purpose of this study is to investigate the possibility of soft science measurement of motivation under strict hard science criteria from observations of individual animals…

Abstract

Purpose

The purpose of this study is to investigate the possibility of soft science measurement of motivation under strict hard science criteria from observations of individual animals and to suggest the conditions under which an observation can be classified as a measurement.

Design/methodology/approach

The methodology starts from reconciling second-order cybernetics/radical constructivism (SOC/RC) understanding of the central role of the observer with physical measurements, which accepts the existence of a mind-independent reality. As a result of the reconciliation, parallels were identified between the SOC/RC experiences of as_is and as_if, on the one hand, and the measurement concepts of accuracy and resolution, on the other hand. The scales of physical measurement are defined by criteria of varying strictness, and the scales that meet the strict criterion of concatenation are generally considered hard science and lead to well-defined accuracy and precision. The similarity between SOC/RC and physical measurement suggests that if accuracy and precision can be computed from observations, then the observations can be classified as measurements in a strict hard science fashion; otherwise, the observations are just observations.

Findings

A nonlinear dynamic model of motivation is reintroduced as an example for reference in measurements of motivation. If there was an agreement on its use among observers (Ethologists), which in reality is not the case, then empirical data may be collected, and the averages and spreads of parameter estimations will define a reference for an animal species. Later, observers with their own data will calibrate with the reference model, so that new observers will have calculated values of accuracy and precision for their data.

Research limitations/implications

Unlike hard science whose scales of measurement are practically unambiguous, measuring the purpose of behaviour of an animal has inherent ambiguity according to the reintroduced model. The ambiguity cannot be resolved from instantaneous readings. The necessary existence of ambiguity renders the criticism of hard science invalid, that of expecting to measure motivation with a static scale as if it were temperature.

Practical implications

Human observers can be treated as measuring devices of motivation from observing behaviour. Each observer can have characteristic accuracy/precision, or validity/reliability, calculated from empirical data.

Social implications

This is an inductive, rather than deductive, study of individual animal behaviour; the author believes it is extensible to individual human behaviour and personality studies. However, group behaviour studies are beyond its scope.

Originality/value

The author believes that the suggestion of ambiguity of scales of animal motivation is original, and the suggested link between SOC/RC and a mainstream hard science is new.

Details

Kybernetes, vol. 48 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 November 2023

Yang Li and Tianxiang Lan

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual…

Abstract

Purpose

This paper aims to employ a multivariate nonlinear regression analysis to establish a predictive model for the final fracture area, while accounting for the impact of individual parameters.

Design/methodology/approach

This analysis is based on the numerical simulation data obtained, using the hybrid finite element–discrete element (FE–DE) method. The forecasting model was compared with the numerical results and the accuracy of the model was evaluated by the root mean square (RMS) and the RMS error, the mean absolute error and the mean absolute percentage error.

Findings

The multivariate nonlinear regression model can accurately predict the nonlinear relationships between injection rate, leakoff coefficient, elastic modulus, permeability, Poisson’s ratio, pore pressure and final fracture area. The regression equations obtained from the Newton iteration of the least squares method are strong in terms of the fit to the six sensitive parameters, and the model follow essentially the same trend with the numerical simulation data, with no systematic divergence detected. Least absolutely deviation has a significantly weaker performance than the least squares method. The percentage contribution of sensitive parameters to the final fracture area is available from the simulation results and forecast model. Injection rate, leakoff coefficient, permeability, elastic modulus, pore pressure and Poisson’s ratio contribute 43.4%, −19.4%, 24.8%, −19.2%, −21.3% and 10.1% to the final fracture area, respectively, as they increased gradually. In summary, (1) the fluid injection rate has the greatest influence on the final fracture area. (2)The multivariate nonlinear regression equation was optimally obtained after 59 iterations of the least squares-based Newton method and 27 derivative evaluations, with a decidability coefficient R2 = 0.711 representing the model reliability and the regression equations fit the four parameters of leakoff coefficient, permeability, elastic modulus and pore pressure very satisfactorily. The models follow essentially the identical trend with the numerical simulation data and there is no systematic divergence. The least absolute deviation has a significantly weaker fit than the least squares method. (3)The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Originality/value

The nonlinear forecasting model of physical parameters of hydraulic fracturing established in this paper can be applied as a standard for optimizing the fracturing strategy and predicting the fracturing efficiency in situ field and numerical simulation. Its effectiveness can be trained and optimized by experimental and simulation data, and taking into account more basic data and establishing regression equations, containing more fracturing parameters will be the further research interests.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 6000