Search results

11 – 20 of over 9000
Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1992

Peter P. Silvester and Dževat Omeragić

The conventional representation of a laminated packet of electrical sheet steel as a homogeneous but anisotropic material is extended by treating any butted joints in the packet…

Abstract

The conventional representation of a laminated packet of electrical sheet steel as a homogeneous but anisotropic material is extended by treating any butted joints in the packet as a distinct homogeneous, two‐dimensionally nonlinear, material. Its magnetic characteristics are derived from the energy increment that results from closing the gap, obtained by solving the two‐dimensional field problem in the gap region. This technique is rigorously valid for any anhysteretic, nonlinear, anisotropic material.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 25 July 2019

Fotios Kasolis and Markus Clemens

This paper aims to develop an automated domain decomposition strategy that is based on the presence of nonlinear field grading material, in the context of model order reduction…

Abstract

Purpose

This paper aims to develop an automated domain decomposition strategy that is based on the presence of nonlinear field grading material, in the context of model order reduction for transient strongly nonlinear electro-quasistatic (EQS) field problems.

Design/methodology/approach

The paper provides convincing empirical insights to support the proposed domain decomposition algorithm, a numerical investigation of the performance of the algorithm for different snapshots and model order reduction experiments.

Findings

The proposed method successfully decomposes the computational domain, while the resulting reduced models are highly accurate. Further, the algorithm is computationally efficient and robust, while it can be embedded in black-box model reduction implementations.

Originality/value

This paper fulfills the demand to effectively perform model order reduction for transient strongly nonlinear EQS field problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2002

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from…

2509

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The bibliography at the end of the paper contains more than 1330 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1999–2002.

Details

Engineering Computations, vol. 19 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 August 2018

Ebrahim Farajpourbonab, Hossein Showkati and Sunil Kute

The main function of the castellation process is making I-sections stiffer by increasing the height of web and supplying a higher moment capacity of primary axis than plain-webbed…

102

Abstract

Purpose

The main function of the castellation process is making I-sections stiffer by increasing the height of web and supplying a higher moment capacity of primary axis than plain-webbed members of the same weight. In addition, it optimizes the use of heavy, costly constructional steel material and provides good services accessibility. The purpose of this study was to investigate the strength and buckling behavior of axially loaded castellated cruciform steel columns using finite element analysis. Although a significant body of research exists on the failure of different columns, there is no proper criterion introduced to determine the point of buckling in the equilibrium path of an imperfect column.

Design/methodology/approach

This paper considers a wide range of practical geometric dimensions and various end conditions using ANSYS software. Findings are reported for about 224 samples of castellated cruciform I-shaped sections, and a simplified approach to evaluate buckling capacity of castellated columns, using the slenderness-load curve, is developed. In addition, the axial compressive capacities of those steel sections are investigated numerically in the current study.

Findings

The results of nonlinear analyses of these columns revealed that the load-carrying capacity of castellated cruciform steel columns far outweighs and is more appropriate than that of the traditional cruciform steel columns. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns in the range of elastic and inelastic behavior.

Practical implications

This study can provide a background for practical engineering applications and design specifications for steel structures with castellated sections. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns showing both elastic and inelastic behavior. Because this method showed reliable performance, it can be used during experimental tests for detecting buckling point.

Originality/value

This study can provide background for practical engineering applications and design specifications for steel structures with castellated sections; also, a physical criterion has been defined for calculating the buckling load of real columns.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2009

Herbert De Gersem

The purpose of this paper is to offer a fast and reliable discretisation scheme for computing the electromagnetic fields inside a ferromagnetic cylinder, accounting for motional…

Abstract

Purpose

The purpose of this paper is to offer a fast and reliable discretisation scheme for computing the electromagnetic fields inside a ferromagnetic cylinder, accounting for motional eddy currents under high velocities and accounting for the severe ferromagnetic saturation of the rotor surface.

Design/methodology/approach

A nonlinear spectral‐element (SE) formulation is developed and compared to existing analytical and finite‐element approaches.

Findings

The proposed SE method results in a higher accuracy, allows for smaller models, avoids upwinding and needs less computation time. Disadvantages are the dense system matrix and the bad condition number.

Research limitations/implications

The SE approach is only developed and tested for 2D models with a single cylindrical domain.

Practical implications

The results of the paper may improve the design and optimisation of solid‐rotor induction machines and magnetic bearings.

Originality/value

The paper offers an appropriate solution for a computational problem, which already has been encountered by a large community of researchers and engineers dealing with high‐speed rotating devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2019

Yijiang Peng, Xiyun Chen, Liping Ying and Mahmoud M.A. Kamel

Based on the base force element method, a two-dimensional random circle aggregate model with Monte Carlo principle is proposed to carry out research on softening curve in…

Abstract

Purpose

Based on the base force element method, a two-dimensional random circle aggregate model with Monte Carlo principle is proposed to carry out research on softening curve in meso-level.

Design/methodology/approach

The meso-level structure of recycled concrete is considered as the five-phase materials composed of aggregate, old interfacial transition zone, old mortar, new interfacial transition zone and new mortar. A multi-polyline damage model is adopted to describe the nonlinear mechanical behavior of recycled concrete material. The destruction state of the element is determined by the first strength theory. The research studies on damage process of recycled concrete under the loading conditions of uniaxial tension were established using the base force element method.

Findings

The softening curves of recycled concrete are obtained, which are in good agreement with experiment results. Simulation results show that the macroscopic mechanical properties and failure mechanism can analyze more reasonably from mesoscopic structure. Besides that, it can be investigated from the numerical results of the size effect in recycled concrete through the mesoscopic heterogeneity. Furthermore, the form of aggregate distribution has influence on the crack path but little effect on the tensile strength of recycled concrete.

Originality/value

The results show that the base force element method has been successfully applied to the study of softening curve of recycled concrete under uniaxial tension.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 March 2020

Behrooz Yousefi, Mohammad Reza Esfahani and Mohammadreza Tavakkolizadeh

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

Abstract

Purpose

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

Design/methodology/approach

In this work, an exact multi-directional stiffness matrix is analytically derived based on the post-cracking bond-slip interaction between concrete and steel bars. The approach is also extended for large displacement analysis using Green–Lagrange finite strain tensor. In the proposed formulation, the weak form of governed differential equations is approximated by a trial-function expansion based on a finite strain-description and an additional degree of freedom for steel bars.

Findings

The findings provide a realistic description of cracking in the concrete structure. Numerical studies are conducted to examine the accuracy of the suggested approach and its capability to predict fairly complex responses of RC models. The findings prove that the proposed element can evaluate local and global responses of RC members, and it can be used as a reliable tool to reflect bond-slip effects in large displacement level. This leads to a robust and precise model for non-linear analysis of RC structures.

Originality/value

The methodology is capable of simulating coupled inelastic shear-flexural behavior of RC members through local stress field theory and Timoshenko beam model.

Article
Publication date: 10 April 2007

G.B. Kumbhar, S.V. Kulkarni, R. Escarela‐Perez and E. Campero‐Littlewood

This paper aims to give a perspective about the variety of techniques which are available and are being further developed in the area of coupled field formulations, with selective…

1219

Abstract

Purpose

This paper aims to give a perspective about the variety of techniques which are available and are being further developed in the area of coupled field formulations, with selective bibliography and practical examples, to help postgraduate students, researchers and designers working in design or analysis of electrical machinery.

Design/methodology/approach

This paper reviews the recent trends in coupled field formulations. The use of these formulations for designing and non‐destructive testing of electrical machinery is described, followed by their classifications, solutions and applications. Their advantages and shortcomings are discussed.

Findings

The paper gives an overview of research, development and applications of coupled field formulations for electrical machinery based on more than 160 references. All landmark papers are classified. Practical engineering case studies are given which illustrate wide applicability of coupled field formulations.

Research limitations/implications

Problems which continue to pose challenges to researchers are enumerated and the advantages of using the coupled‐field formulation are pointed out.

Practical implications

This paper gives a detailed description of the application of the coupled field formulation method to the analysis of problems that are present in different electrical machines. Examples of analysis of generators and transformers with this formulation are presented. The application examples give guidelines for its use in other analyses.

Originality/value

The coupled‐field formulation is used in the analysis of rotational machines and transformers where reference data are available and comparisons with other methods are performed and the advantages are justified. This paper serves as a guide for the ongoing research on coupled problems in electrical machinery.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

11 – 20 of over 9000