Search results

1 – 10 of over 3000
Article
Publication date: 6 March 2017

Oleg M. Alifanov

The main purpose of this study, reflecting mainly the content of the authors’ plenary lecture, is to make a brief overview of several approaches developed by the author and his…

Abstract

Purpose

The main purpose of this study, reflecting mainly the content of the authors’ plenary lecture, is to make a brief overview of several approaches developed by the author and his colleagues to the solution to ill-posed inverse heat transfer problems (IHTPs) with their possible extension to a wider class of inverse problems of mathematical physics and, most importantly, to show the wide possibilities of this methodology by examples of aerospace applications. In this regard, this study can be seen as a continuation of those applications that were discussed in the lecture.

Design/methodology/approach

The application of the inverse method was pre-tested with experimental investigations on a special test equipment in laboratory conditions. In these studies, the author used the solution to the nonlinear inverse problem in the conjugate (conductive and convective) statement. The corresponding iterative algorithm has been developed and tested by a numerical and experimental way.

Findings

It can be stated that the theory and methodology of solving IHTPs combined with experimental simulation of thermal conditions is an effective tool for various fundamental and applied research and development in the field of heat and mass transfer.

Originality/value

With the help of the developed methods of inverse problems, the investigation was conducted for a porous cooling with a gaseous coolant for heat protection of the re-entry vehicle in the natural environment of hypersonic flight. Moreover, the analysis showed that the inverse methods can make a useful contribution to the study of heat transfer at the surface of a solid body under the influence of the hypersonic heterogeneous (dusty) gas stream and in many other aerospace applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 November 2022

Junlong Peng and Xiang-Jun Liu

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined…

Abstract

Purpose

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined with nonlinear programming algorithm, study how to schedule the number of labor in each process at the minimum cost to achieve an extremely short construction period goal.

Design/methodology/approach

The method of inverse optimization is mainly used in this study. In the first phase, establish a positive optimization model, according to the existing labor constraints, aiming at the shortest construction period. In the second phase, under the condition that the expected shortest construction period is known, on the basis of the positive optimization model, the inverse optimization method is used to establish the inverse optimization model aiming at the minimum change of the number of workers, and finally the optimal labor allocation scheme that meets the conditions is obtained. Finally, use algorithm to solve and prove with a case.

Findings

The case study shows that this method can effectively achieve the extremely short duration goal of the engineering project at the minimum cost, and provide the basis for the decision-making of the engineering project.

Originality/value

The contribution of this paper to the existing knowledge is to carry out a preliminary study on the relatively blank field of the current engineering project with a very short construction period, and provide a path for the vast number of engineering projects with strict requirements on the construction period to achieve a very short construction period, and apply the inverse optimization method to the engineering field. Furthermore, a double-nested genetic algorithm and nonlinear programming algorithm are designed. It can effectively solve various optimization problems.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 August 2022

Chunyun Zhang, Jie Mei, Yushuai Bai, Miao Cui, Haifeng Peng and X. W. Gao

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening…

Abstract

Purpose

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening elastoplastic materials in three-dimensional geometries.

Design/methodology/approach

The power hardening elastoplastic problem is solved by the complex variable finite element method in software ABAQUS, based on a three-dimensional complex stress element using user-defined element subroutine. The complex-variable-differentiation method is introduced and used to accurately calculate the sensitivity coefficients in the multiple parameters identification method, and the Levenberg–Marquardt algorithm is applied to carry out the inversion.

Findings

Numerical results indicate that the complex variable finite element method has good performance for solving elastoplastic problems of three-dimensional geometries. The inversion method is effective and accurate for simultaneously identifying multi-parameters of power hardening elastoplastic problems in three-dimensional geometries, which could be employed for solving inverse elastoplastic problems in engineering applications.

Originality/value

The constitutive parameters and boundary conditions are simultaneously identified for power hardening elastoplastic problems in three-dimensional geometries, which is much challenging in practical applications. The numerical results show that the inversion method has high accuracy, good stability, and fast convergence speed.

Article
Publication date: 6 May 2021

Mousa Huntul and Daniel Lesnic

The purpose of the study is to solve numerically the inverse problem of determining the time-dependent convection coefficient and the free boundary, along with the temperature in…

Abstract

Purpose

The purpose of the study is to solve numerically the inverse problem of determining the time-dependent convection coefficient and the free boundary, along with the temperature in the two-dimensional convection-diffusion equation with initial and boundary conditions supplemented by non-local integral observations. From the literature, there is already known that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data.

Design/methodology

For the numerical discretization, this paper applies the alternating direction explicit finite-difference method along with the Tikhonov regularization to find a stable and accurate numerical solution. The resulting nonlinear minimization problem is solved computationally using the MATLAB routine lsqnonlin. Both exact and numerically simulated noisy input data are inverted.

Findings

The numerical results demonstrate that accurate and stable solutions are obtained.

Originality/value

The inverse problem presented in this paper was already showed to be locally uniquely solvable, but no numerical solution has been realized so far; hence, the main originality of this work is to attempt this task.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 July 2020

Mousa Huntul and Mohammad Tamsir

The purpose of this paper is to provide an insight and to solve numerically the identification of timewise terms and free boundaries coefficient appearing in the heat equation…

Abstract

Purpose

The purpose of this paper is to provide an insight and to solve numerically the identification of timewise terms and free boundaries coefficient appearing in the heat equation from over-determination conditions.

Design/methodology/approach

The formulated coefficient identification problem is inverse and ill-posed, and therefore, to obtain a stable solution, a nonlinear Tikhonov regularization least-squares approach is used. For the numerical discretization, the finite difference method combined with a regularized nonlinear minimization is performed using the MATLAB subroutine lsqnonlin.

Findings

The numerical results presented for two examples show the efficiency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.

Research limitations/implications

The mathematical formulation is restricted to identify coefficients in unknown components dependent on time, and this may be considered as a research limitation. However, there is no research implication to overcome this, as the known input data is also limited to single temperature in heat equation with Stefan conditions, and the first- and second-order heat moments measurements at a particular time location.

Practical implications

As noisy data are inverted, the study models real situations in which practical measurements are inherently contaminated with noise.

Social implications

The identification of the timewise terms and free boundaries will be of great interest in the heat transfer community and related fluid flow applications.

Originality/value

The current investigation advances previous studies, which assumed that the coefficient multiplying the lower order temperature term depends on time. The knowledge of this physical property coefficient is very important in heat transfer and fluid flow. The originality lies in the insight gained by performing for the numerical simulations of inversion to find the timewise terms and free boundaries coefficient dependent on time in the heat equation from noisy measurements.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 January 2021

Rainald Löhner, Harbir Antil, Hamid Tamaddon-Jahromi, Neeraj Kavan Chakshu and Perumal Nithiarasu

The purpose of this study is to compare interpolation algorithms and deep neural networks for inverse transfer problems with linear and nonlinear behaviour.

Abstract

Purpose

The purpose of this study is to compare interpolation algorithms and deep neural networks for inverse transfer problems with linear and nonlinear behaviour.

Design/methodology/approach

A series of runs were conducted for a canonical test problem. These were used as databases or “learning sets” for both interpolation algorithms and deep neural networks. A second set of runs was conducted to test the prediction accuracy of both approaches.

Findings

The results indicate that interpolation algorithms outperform deep neural networks in accuracy for linear heat conduction, while the reverse is true for nonlinear heat conduction problems. For heat convection problems, both methods offer similar levels of accuracy.

Originality/value

This is the first time such a comparison has been made.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 July 2021

Michał Ciałkowski, Aleksander Olejnik, Magda Joachimiak, Krzysztof Grysa and Andrzej Frąckowiak

To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of ceramics with high thermal resistance. The purpose of this paper is the selection of…

Abstract

Purpose

To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of ceramics with high thermal resistance. The purpose of this paper is the selection of ceramics with such a low heat conduction coefficient and thickness, so that the permissible metal temperature is not exceeded on the metal-ceramics interface due to the loss ofmechanical properties.

Design/methodology/approach

Therefore, for given temperature changes over time on the metal-ceramics interface, temperature changes over time on the inner side of the blade and the assumed initial temperature, the temperature change over time on the outer surface of the ceramics should be determined. The problem presented in this way is a Cauchy type problem. When analyzing the problem, it is taken into account that thermophysical properties of metal and ceramics may depend on temperature. Due to the thin layer of ceramics in relation to the wall thickness, the problem is considered in the area in the flat layer. Thus, a one-dimensional non-stationary heat flow is considered.

Findings

The range of stability of the Cauchy problem as a function of time step, thickness of ceramics and thermophysical properties of metal and ceramics are examined. The numerical computations also involved the influence of disturbances in the temperature on metal-ceramics interface on the solution to the inverse problem.

Practical implications

The computational model can be used to analyze the heat flow in gas turbine blades with thermal barrier.

Originality/value

A number of inverse problems of the type considered in the paper are presented in the literature. Inverse problems, especially those Cauchy-type, are ill-conditioned numerically, which means that a small change in the inputs may result in significant errors of the solution. In such a case, regularization of the inverse problem is needed. However, the Cauchy problem presented in the paper does not require regularization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2022

M.J. Huntul and Mohammad Tamsir

The purpose of this paper is to reconstruct the potential numerically in the fourth-order Rayleigh–Love equation with boundary and nonclassical boundary conditions, from…

Abstract

Purpose

The purpose of this paper is to reconstruct the potential numerically in the fourth-order Rayleigh–Love equation with boundary and nonclassical boundary conditions, from additional measurement.

Design/methodology/approach

Although, the aforesaid inverse identification problem is ill-posed but has a unique solution. The authors use the cubic B-spline (CBS) collocation and Tikhonov regularization techniques to discretize the direct problem and to obtain stable as well as accurate solutions, respectively. The stability, for the discretized system of the direct problem, is also carried out by means of the von Neumann method.

Findings

The acquired results demonstrate that accurate as well as stable solutions for the a(t) are accessed for λ {10–8, 10–7, 10–6, 10–5}, when p {0.01%, 0.1%} for both linear and nonlinear potential coefficient a(t). The stability analysis shows that the discretized system of the direct problem is unconditionally stable.

Research limitations/implications

Since the noisy data are introduced, the investigation and analysis model real circumstances where the practical quantities are naturally infested with noise.

Practical implications

The acquired results demonstrate that accurate as well as stable solutions for the a(t) are accessed for λ {10–8, 10–7, 10–6, 10–5}, when p {0.01%, 0.1%} for both linear and nonlinear potential coefficient a(t). The stability analysis shows that the discretized system of the direct problem is unconditionally stable.

Originality/value

The potential term in the fourth-order Rayleigh–Love equation from additional measurement is reconstructed numerically, for the first time. The technique establishes that accurate, as well as stable solutions are obtained.

Article
Publication date: 20 June 2018

Mousa Huntul, Daniel Lesnic and Tomas Johansson

The purpose of this study is to provide an insight and to solve numerically the identification of an unknown coefficient of radiation/absorption/perfusion appearing in the heat…

Abstract

Purpose

The purpose of this study is to provide an insight and to solve numerically the identification of an unknown coefficient of radiation/absorption/perfusion appearing in the heat equation from additional temperature measurements.

Design/methodology/approach

First, the uniqueness of solution of the inverse coefficient problem is briefly discussed in a particular case. However, the problem is still ill-posed as small errors in the input data cause large errors in the output solution. For numerical discretization, the finite difference method combined with a regularized nonlinear minimization is performed using the MATLAB toolbox routine lsqnonlin.

Findings

Numerical results presented for three examples show the efficiency of the computational method and the accuracy and stability of the numerical solution even in the presence of noise in the input data.

Research limitations/implications

The mathematical formulation is restricted to identify coefficients which separate additively in unknown components dependent individually on time and space, and this may be considered as a research limitation. However, there is no research implication to overcome this, as the known input data are also limited to single measurements of temperature at a particular time and space location.

Practical implications

As noisy data are inverted, the study models real situations in which practical measurements are inherently contaminated with noise.

Social implications

The identification of the additive time- and space-dependent perfusion coefficient will be of great interest to the bio-heat transfer community and applications.

Originality/value

The current investigation advances previous studies which assumed that the coefficient multiplying the lower-order temperature term depends on time or space separately. The knowledge of this physical property coefficient is very important in biomedical engineering for understanding the heat transfer in biological tissues. The originality lies in the insight gained by performing for the first time numerical simulations of inversion to find the coefficient additively dependent on time and space in the heat equation from noisy measurements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2022

Sheng Zhang, Peng Lan, Hai-Chao Li, Chen-Xi Tong and Daichao Sheng

Prediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of…

Abstract

Purpose

Prediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of partial differential equations (PDEs). Generally, there are challenges in solving these two issues using traditional numerical algorithms, while the conventional data-driven methods require massive data sets for training and exhibit negative generalization potential. This paper aims to employ the physics-informed neural networks (PINNs) for solving both the forward and inverse problems.

Design/methodology/approach

A typical consolidation problem with continuous drainage boundary conditions is firstly considered. The PINNs, analytical, and finite difference method (FDM) solutions are compared for the forward problem, and the estimation of the interface parameters involved in the problem is discussed for the inverse problem. Furthermore, the authors also explore the effects of hyperparameters and noisy data on the performance of forward and inverse problems, respectively. Finally, the PINNs method is applied to the more complex consolidation problems.

Findings

The overall results indicate the excellent performance of the PINNs method in solving consolidation problems with various drainage conditions. The PINNs can provide new ideas with a broad application prospect to solve PDEs in the field of geotechnical engineering, and also exhibit a certain degree of noise resistance for estimating the soil parameters.

Originality/value

This study presents the potential application of PINNs for the consolidation of soils. Such a machine learning algorithm helps to obtain remarkably accurate solutions and reliable parameter estimations with fewer and average-quality data, which is beneficial in engineering practice.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000