Search results

1 – 10 of over 2000
Article
Publication date: 10 June 2022

Hong-Sen Yan, Zhong-Tian Bi, Bo Zhou, Xiao-Qin Wan, Jiao-Jun Zhang and Guo-Biao Wang

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Abstract

Purpose

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Design/methodology/approach

The authors present a detailed explanation for modeling the general discrete nonlinear dynamic system by the MTN. The weight coefficients of the network can be obtained by sampling data learning. Specifically, the least square (LS) method is adopted herein due to its desirable real-time performance and robustness.

Findings

Compared with the existing mainstream nonlinear time series analysis methods, the least square method-based multidimensional Taylor network (LSMTN) features its more desirable prediction accuracy and real-time performance. Model metric results confirm the satisfaction of modeling and identification for the generalized nonlinear system. In addition, the MTN is of simpler structure and lower computational complexity than neural networks.

Research limitations/implications

Once models of general nonlinear dynamical systems are formulated based on MTNs and their weight coefficients are identified using the data from the systems of ecosystems, society, organizations, businesses or human behavior, the forecasting, optimizing and controlling of the systems can be further studied by means of the MTN analytical models.

Practical implications

MTNs can be used as controllers, identifiers, filters, predictors, compensators and equation solvers (solving nonlinear differential equations or approximating nonlinear functions) of the systems of ecosystems, society, organizations, businesses or human behavior.

Social implications

The operating efficiency and benefits of social systems can be prominently enhanced, and their operating costs can be significantly reduced.

Originality/value

Nonlinear systems are typically impacted by a variety of factors, which makes it a challenge to build correct mathematical models for various tasks. As a result, existing modeling approaches necessitate a large number of limitations as preconditions, severely limiting their applicability. The proposed MTN methodology is believed to contribute much to the data-based modeling and identification of the general nonlinear dynamical system with no need for its prior knowledge.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 August 2023

Shuai Yue, Ben Niu, Huanqing Wang, Liang Zhang and Adil M. Ahmad

This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.

Abstract

Purpose

This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.

Design/methodology/approach

A control scheme based on sliding mode surface with a hierarchical structure is introduced to enhance the responsiveness and robustness of the studied systems. An equivalent control and switching control rules are co-designed in a hierarchical sliding mode control (HSMC) framework to ensure that the system state reaches a given sliding surface and remains sliding on the surface, finally stabilizing at the equilibrium point. Besides, the input nonlinearities consist of non-symmetric saturation and dead-zone, which are estimated by an unknown bounded function and a known affine function.

Findings

Based on fuzzy logic systems and the hierarchical sliding mode control method, an adaptive fuzzy control method for uncertain switched under-actuated systems is put forward.

Originality/value

The “cause and effect” problems often existing in conventional backstepping designs can be prevented. Furthermore, the presented adaptive laws can eliminate the influence of external disturbances and approximation errors. Besides, in contrast to arbitrary switching strategies, the authors consider a switching rule with average dwell time, which resolves control problems that cannot be resolved with arbitrary switching signals and reduces conservatism.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 October 2023

Yaoyao Tuo, Junyang Li and Yankui Song

This paper aims to design an event-triggered adaptive prescribed performance controller for flexible manipulators, with the primary objectives of achieving output performance…

Abstract

Purpose

This paper aims to design an event-triggered adaptive prescribed performance controller for flexible manipulators, with the primary objectives of achieving output performance constraints and addressing communication resource limitations.

Design/methodology/approach

The authors propose a novel prescribed performance barrier Lyapunov function (PP-BLF) that considers both output and tracking performance constraints. The PP-BLF ensures that the system's output, transient behavior and steady-state performance, adhere to prescribed constraints. The boundary of the PP-BLF is established by an exponential function that decays over time. Notably, the PP-BLF can be applied seamlessly in unconstrained cases without necessitating controller redesign. Moreover, the controller design incorporates an event-triggered mechanism, effectively reducing the frequency of controller updates and optimizing the utilization of communication resources. Additionally, the authors employ adaptive techniques to estimate the system's unknown parameters and approximate unknown nonlinear functions using radial basis function neural networks (RBFNN). To address the challenge of “complexity explosion”, dynamic surface technology is employed.

Findings

Numerical simulations are conducted under five different cases to verify the effectiveness of the proposed controller. The results demonstrate that the controller successfully constrains the output tracking error within the prescribed performance boundary. Moreover, compared with the traditional time-triggered mechanism, the event-triggered mechanism significantly reduces the controller's update frequency, resolving the problem of limited communication resources.

Originality/value

The paper reduces the update frequency of control signals and improves resource utilization through an event-triggered mechanism in the form of relative thresholds. The authors recognize that the event-triggered mechanism may impact the output performance of the system. To address this challenge, the authors propose a prescribed performance Barrier Lyapunov Function (PP-BLF). The PP-BLF is designed to effectively constrain the output performance of the system, ensuring satisfactory control even when the control signal updates are reduced.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2023

Yaohua Shen and Mou Chen

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based…

Abstract

Purpose

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based on event-triggered mechanism (ETM), nonlinear disturbance observer (NDO) and dynamic surface control (DSC) techniques.

Design/methodology/approach

To estimate unsteady aerodynamic disturbances (UADs) to suppress their adverse effects, the NDO is designed. To avoid taking the derivative of the virtual control law directly and eliminate the coupling term of the system states and dynamic surface errors in the stability analysis, an improved DSC is developed. Combined with the NDO and DSC techniques, a robust backstepping method is proposed to achieve the PSPM. Furthermore, to decrease the deflection frequency of the aircraft actuators, a state-dependent ETM is introduced.

Findings

An ETM-and-NDO-based backstepping method with an improved DSC technique is developed to achieve the PSPM and decrease the deflection frequency of aircraft actuators. And simulation results are presented to verify the effectiveness of the proposed paper.

Originality/value

Few studies have been conducted on the control of the PSPM in which the lateral and longitudinal attitude dynamics are coupled with each other considering the UADs. Moreover, the mechanism that can decrease the deflection frequency of aircraft actuators is rarely developed in existing research. This study proposes an ETM-and-NDO-based backstepping scheme to address these problems with satisfactory performance of the PSPM.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 January 2024

Li Li, Hui Ye and Xiaohua Meng

Considering the unmeasurable states of the systems and the previewed reference signal, a novel fuzzy observer-based preview controller, which is a mixed controller of the fuzzy…

Abstract

Purpose

Considering the unmeasurable states of the systems and the previewed reference signal, a novel fuzzy observer-based preview controller, which is a mixed controller of the fuzzy observer-based controller, fuzzy integrator and preview controller, is considered to address the tracking control problem.

Design/methodology/approach

The authors employ an augmentation technique to construct an augmented error system for uncertain T-S fuzzy discrete-time systems with time-varying uncertainties. Additionally, the authors obtain the corresponding linear matrix inequality (LMI) conditions for designing the preview controller.

Findings

This paper discusses the preview tracking problem for nonlinear systems. First, considering the unmeasurable states of the systems and the previewed reference signal, a novel fuzzy observer-based preview controller, which is a mixed controller of the fuzzy observer-based controller, fuzzy integrator, and preview controller, is considered to address the tracking control problem. Then, using the fuzzy Lyapunov functional with the linear matrix inequality (LMI) technique, new sufficient conditions for the asymptotic stability of the augmented system are derived by applying the LMI technique. The preview controller and fuzzy observer can be designed in one step. Finally, a numerical example is used to illustrate the effectiveness of the results.

Originality/value

An augmented error system is successfully constructed by the state augmentation approach. A novel preview controller is designed to address the tracking control problem. The preview controller and fuzzy observer can be designed in one step.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 February 2023

Ahmed Eslam Salman and Magdy Raouf Roman

The study proposed a human–robot interaction (HRI) framework to enable operators to communicate remotely with robots in a simple and intuitive way. The study focused on the…

Abstract

Purpose

The study proposed a human–robot interaction (HRI) framework to enable operators to communicate remotely with robots in a simple and intuitive way. The study focused on the situation when operators with no programming skills have to accomplish teleoperated tasks dealing with randomly localized different-sized objects in an unstructured environment. The purpose of this study is to reduce stress on operators, increase accuracy and reduce the time of task accomplishment. The special application of the proposed system is in the radioactive isotope production factories. The following approach combined the reactivity of the operator’s direct control with the powerful tools of vision-based object classification and localization.

Design/methodology/approach

Perceptive real-time gesture control predicated on a Kinect sensor is formulated by information fusion between human intuitiveness and an augmented reality-based vision algorithm. Objects are localized using a developed feature-based vision algorithm, where the homography is estimated and Perspective-n-Point problem is solved. The 3D object position and orientation are stored in the robot end-effector memory for the last mission adjusting and waiting for a gesture control signal to autonomously pick/place an object. Object classification process is done using a one-shot Siamese neural network (NN) to train a proposed deep NN; other well-known models are also used in a comparison. The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved.

Findings

The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved. The results revealed the effectiveness of the proposed teleoperation system and demonstrate its potential for use by robotics non-experienced users to effectively accomplish remote robot tasks.

Social implications

The proposed system reduces risk and increases level of safety when applied in hazardous environment such as the nuclear one.

Originality/value

The contribution and uniqueness of the presented study are represented in the development of a well-integrated HRI system that can tackle the four aforementioned circumstances in an effective and user-friendly way. High operator–robot reactivity is kept by using the direct control method, while a lot of cognitive stress is removed using elective/flapped autonomous mode to manipulate randomly localized different configuration objects. This necessitates building an effective deep learning algorithm (in comparison to well-known methods) to recognize objects in different conditions: illumination levels, shadows and different postures.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 October 2023

Jie Chu, Junhong Li, Yizhe Jiang, Weicheng Song and Tiancheng Zong

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical…

Abstract

Purpose

The Wiener-Hammerstein nonlinear system is made up of two dynamic linear subsystems in series with a static nonlinear subsystem, and it is widely used in electrical, mechanical, aerospace and other fields. This paper considers the parameter estimation of the Wiener-Hammerstein output error moving average (OEMA) system.

Design/methodology/approach

The idea of multi-population and parameter self-adaptive identification is introduced, and a multi-population self-adaptive differential evolution (MPSADE) algorithm is proposed. In order to confirm the feasibility of the above method, the differential evolution (DE), the self-adaptive differential evolution (SADE), the MPSADE and the gradient iterative (GI) algorithms are derived to identify the Wiener-Hammerstein OEMA system, respectively.

Findings

From the simulation results, the authors find that the estimation errors under the four algorithms stabilize after 120, 30, 20 and 300 iterations, respectively, and the estimation errors of the four algorithms converge to 5.0%, 3.6%, 2.7% and 7.3%, which show that all four algorithms can identify the Wiener-Hammerstein OEMA system.

Originality/value

Compared with DE, SADE and GI algorithm, the MPSADE algorithm not only has higher parameter estimation accuracy but also has a faster convergence speed. Finally, the input–output relationship of laser welding system is described and identified by the MPSADE algorithm. The simulation results show that the MPSADE algorithm can effectively identify parameters of the laser welding system.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 November 2023

Abdeldjabar Benrabah, Farid Khoucha, Ali Raza and Mohamed Benbouzid

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith…

Abstract

Purpose

The purpose of this study is to improve the control performance of wind energy conversion systems (WECSs) by proposing a new sensorless, robust control strategy based on a Smith predictor active disturbance rejection control (SP-ADRC) associated with a speed/position estimator.

Design/methodology/approach

The estimator consists of a sliding mode observer (SMO) in combination with a phase-locked loop (PLL) to estimate the permanent magnet synchronous generator (PMSG) rotor position and speed. At the same time, the SP-ADRC is applied to the speed control loop of the variable-speed WECS control system to adapt strongly to dynamic characteristics under parameter uncertainties and disturbances.

Findings

Numerical simulations are conducted to evaluate the speed tracking performances under various wind speed profiles. The results show that the proposed sensorless speed control improves the accuracy of rotor speed and position estimation and provides better power tracking performance than a regular ADRC controller under fast wind speed variations.

Practical implications

This paper offers a new approach for designing sensorless, robust control for PMSG-based WECSs.

Originality/value

A new sensorless, robust control is proposed to improve the stability and tracking performance of PMSG-based WECSs. The SP-ADRC control attenuates the effects of parameter uncertainties and disturbances and eliminates the time-delay impact. The sensorless control design based on SMO and PLL improves the accuracy of rotor speed estimation and reduces the chattering problem of traditional SMO. The obtained results support the theoretical findings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000