Search results

1 – 10 of 630
Article
Publication date: 30 November 2021

Supen Kumar Sah and Anup Ghosh

The purpose of this article is to carry out the thermal buckling analysis of power and sigmoid functionally graded material Sandwich plate (P-FGM and S-FGM) under uniform, linear…

Abstract

Purpose

The purpose of this article is to carry out the thermal buckling analysis of power and sigmoid functionally graded material Sandwich plate (P-FGM and S-FGM) under uniform, linear, nonlinear and sinusoidal temperature rise.

Design/methodology/approach

Thermal buckling of FGM Sandwich plates namely, FGM face with ceramic core (Type-A) and homogeneous face layers with FGM core (Type-B), incorporated with nonpolynomial shear deformation theories are considered for an analytical solution in this investigation. Effective material properties and thermal expansion coefficients of FGM Sandwich plates are evaluated based on Voigt's micromechanical model considering power and sigmoid law. The governing equilibrium and stability equations for the thermal buckling analysis are derived based on sinusoidal shear deformation theory (SSDT) and inverse trigonometric shear deformation theory (ITSDT) along with Von Karman nonlinearity. Analytical solutions for thermal buckling are carried out using the principle of minimum potential energy and Navier's solution technique.

Findings

Critical buckling temperature of P-FGM and S-FGM Sandwich plates Type-A and B under uniform, linear, non-linear, and sinusoidal temperature rise are obtained and analyzed based on SSDT and ITSDT. Influence of power law, sigmoid law, span to thickness ratio, aspect ratio, volume fraction index, different types of thermal loadings and Sandwich plate types over critical buckling temperature are investigated. An analytical method of solution for thermal buckling of power and sigmoid FGM Sandwich plates with efficient shear deformation theories has been successfully analyzed and validated.

Originality/value

The temperature distribution across FGM plate under a high thermal environment may be uniform, linear, nonlinear, etc. In practice, temperature variation is an unpredictable phenomenon; therefore, it is essential to have a temperature distribution model which can address a sinusoidal temperature variation too. In the present work, a new sinusoidal temperature rise is proposed to describe the effect of sinusoidal temperature variation over critical buckling temperature for P-FGM and S-FGM Sandwich plates. For the first time, the FGM Sandwich plate is modeled using the sigmoid function to investigate the thermal buckling behavior under the uniform, linear, nonlinear and sinusoidal temperature rise. Nonpolynomial shear deformation theories are utilized to obtain the equilibrium and stability equations for thermal buckling analysis of P-FGM and S-FGM Sandwich plates.

Article
Publication date: 14 October 2021

Nikolaos Papanikolaou and Konstantinos Anyfantis

Experimental mid/large scale testing of ship-like stiffened panels in compression is a quite expensive exercise that is not standard. Numerical simulations are preferred instead…

Abstract

Purpose

Experimental mid/large scale testing of ship-like stiffened panels in compression is a quite expensive exercise that is not standard. Numerical simulations are preferred instead. Because of being relatively inexpensive (cost and time wise), most authors perform an exhaustive design space exploration arriving at a significant number of runs. This work demonstrates that the buckling response with respect to the nondimensional slenderness ratios may well be fitted with nine runs per stiffener geometry.

Design/methodology/approach

Efficient derivation of buckling strength formulas for stiffened panels through the employment of design of experiments (DoE) and response surface methodology (RSM) combined with numerical nonlinear experimentation over the entire range of practical geometries.

Findings

The surrogate model developed for T-bar stiffeners predicts accurately enough the ultimate stress in the practical design area, while the surrogate models for angle bars and flat bars demonstrate difference between 10 and 30% from common structural rules (CSR).

Originality/value

To the authors' best knowledge, the statistical-based formal and rigorous approach of DoE and RSM to obtaining buckling surfaces for stiffened panels is performed for the first time. The number of required observations per stiffener type has not been addressed yet as each work selects its own sampling scheme without formal reasoning. This work comes to frame the number of observations for efficient surrogate model building.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2002

Jaroslav Mackerle

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite…

3428

Abstract

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite materials are considered. Topics include: material and mechanical properties of sandwich structures; vibration, dynamic response and impact problems; heat transfer and thermomechanical responses; contact problems; fracture mechanics, fatigue and damage; stability problems; special finite elements developed for the analysis of sandwich structures; analysis of sandwich beams, plates, panels and shells; specific applications in various fields of engineering; other topics. The analysis of cellular solids is also included. The bibliography at the end of this paper contains 655 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1980 and 2001.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 October 2021

Kaveh Salmalian, Ali Alijani and Habib Ramezannejad Azarboni

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined…

Abstract

Purpose

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined function as an initial assumption for the post-buckling path is introduced to solve the differential equation. The finite difference method is used to approximate the lateral deflection of the column based on the differential equation. Moreover, the finite element method is used to derive the tangent stiffness matrix of the column.

Design/methodology/approach

The non-linear buckling analysis of functionally graded materials is carried out by using three analytical, finite difference and finite element methods. The elastic deformation and Euler-Bernoulli beam theory are considered to establish the constitutive and kinematics relations, respectively. The governing differential equation of the post-buckling problem is derived through the energy method and the calculus variation.

Findings

An incremental iterative solution and the perturbation of the displacement vector at the critical buckling point are performed to determine the post-buckling path. The convergence of the finite element results and the effects of geometric and material characteristics on the post-buckling path are investigated.

Originality/value

The key point of the research is to compare three methods and to detect error sources by considering the derivation process of relations. This comparison shows that a non-incremental solution in the analytical and finite difference methods and an initial assumption in the analytical method lead to an error in results. However, the post-buckling path in the finite element method is traced by the updated tangent stiffness matrix in each load step without any initial limitation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 August 1998

Ron Postle and Jacqueline Rebecca Postle

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include…

Abstract

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include complicated boundary conditions. However, the approximations and assumptions which form the basis of engineering models make them inappropriate for textile materials. Very small stresses on textile materials cause extremely large strains so that the deformations are highly nonlinear. In this paper, we develop a nonlinear mathematical method. In the final section, the nonlinear differential equations used are generalised into a nonlinear evolution equation which is completely integrable and thus solved analytically obtaining dynamical solution for three‐dimensional fabric drape. These analytical solutions are applicable under all conditions and are not subject to computational difficulties associated with finding numerical solutions for highly nonlinear problems. The use of this analytical approach to fabric mechanics and dynamics provides us with a very powerful tool to formulate and solve many long‐standing problems in fabric and clothing technology.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 September 2019

Efstathios E. Theotokoglou, Georgios Balokas and Evgenia K. Savvaki

The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade.

Abstract

Purpose

The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade.

Design/methodology/approach

Experimental experience has shown that local buckling is a major failure mode that dominantly influences the total collapse of the blade.

Findings

The results from parametric analyses offer a clear perspective about the buckling capacity but also about the post-buckling behavior and strength of the models.

Research limitations/implications

This makes possible to compare the response of the different fiber-reinforced polymers used in the computational model.

Originality/value

Furthermore, this investigation leads to useful conclusions for the material design optimization of the load-carrying box girder, as significant advantages derive not only from the combination of different fiber-reinforced polymers in hybrid material structures, but also from Kevlar-fiber blades.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 August 2018

Ebrahim Farajpourbonab, Hossein Showkati and Sunil Kute

The main function of the castellation process is making I-sections stiffer by increasing the height of web and supplying a higher moment capacity of primary axis than plain-webbed…

102

Abstract

Purpose

The main function of the castellation process is making I-sections stiffer by increasing the height of web and supplying a higher moment capacity of primary axis than plain-webbed members of the same weight. In addition, it optimizes the use of heavy, costly constructional steel material and provides good services accessibility. The purpose of this study was to investigate the strength and buckling behavior of axially loaded castellated cruciform steel columns using finite element analysis. Although a significant body of research exists on the failure of different columns, there is no proper criterion introduced to determine the point of buckling in the equilibrium path of an imperfect column.

Design/methodology/approach

This paper considers a wide range of practical geometric dimensions and various end conditions using ANSYS software. Findings are reported for about 224 samples of castellated cruciform I-shaped sections, and a simplified approach to evaluate buckling capacity of castellated columns, using the slenderness-load curve, is developed. In addition, the axial compressive capacities of those steel sections are investigated numerically in the current study.

Findings

The results of nonlinear analyses of these columns revealed that the load-carrying capacity of castellated cruciform steel columns far outweighs and is more appropriate than that of the traditional cruciform steel columns. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns in the range of elastic and inelastic behavior.

Practical implications

This study can provide a background for practical engineering applications and design specifications for steel structures with castellated sections. In the present paper, new geometric criteria have been introduced having the ability to cover different types of columns. It shows the critical load of columns showing both elastic and inelastic behavior. Because this method showed reliable performance, it can be used during experimental tests for detecting buckling point.

Originality/value

This study can provide background for practical engineering applications and design specifications for steel structures with castellated sections; also, a physical criterion has been defined for calculating the buckling load of real columns.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 March 2022

X.Z. Zhao and Peter Chang

Double-beam/column systems have drawn much attention in many engineering fields. This work aims to present the free and forced vibrations of a novel and complex double-column…

Abstract

Purpose

Double-beam/column systems have drawn much attention in many engineering fields. This work aims to present the free and forced vibrations of a novel and complex double-column system with concentrated masses, axial loads and discrete viscoelastic supports subjected to the excitation of ground acceleration are solved by the extended Laplace transform method (ELTM).

Design/methodology/approach

In this work, the authors proposed an extended Laplace transform method (ELTM), which is an exact and explicit analytical method. Firstly, the mathematical model simulating the vibrations of the double-column system is reformulated with Dirac's delta function. Secondly, the exact and explicit mode shape solutions are obtained, based on which the natural frequencies and dynamic responses are obtained. An illustrating example is presented to show the validity of the proposed method. A parametric study is carried out to investigate the influences of the non-dimensional column stiffness ratio and the support stiffness ratio on the peak dynamic displacement and velocity.

Findings

It is shown that the proposed method can give exact and explicit solutions of the mode shapes and natural frequencies. It is found that the asynchronous vibrations of the proposed double-column systems can be implemented to efficiently dissipate seismic energy, as shown in the time-histories of displacement and velocity.

Practical implications

This research systematically studied the free and forced vibrations of the complex double-column system. The proposed extended ELTM is a general method. Its application to studying the energy dissipation capability implicates that the double-column system can be utilized to reduce responses in structures under earthquake attacks.

Originality/value

The proposed extended ELTM is original and powerful. Its application to study the complex double-columns system with discrete supports, concentrated masses and axial loads is novel.

Details

Engineering Computations, vol. 39 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2023

Nor Salwani Hashim and Fatimah De’nan

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads…

Abstract

Purpose

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads. Therefore, it is possible to design the opening in a different arrangement of web opening to achieve section efficiency, thus improving the strength and torsional behaviour of the section with web opening. This study aims to focus on the finite element analysis of I-beam with and without openings in steel section dominated to lateral-torsional buckling behaviour.

Design/methodology/approach

In this work, the analysis of different sizes, shapes and arrangements of web opening is performed by using LUSAS application to conduct numerical analysis on lateral-torsional buckling behaviour. This involves three diameter sizes of web opening, five types of opening shapes and two criteria of the model.

Findings

The section with c-hexagon web opening was placed about 200-mm centre to centre and 100-mm edge distance, contribute to 7.26% increase of buckling capacity. For the section with 150-mm centre to centre and 50-mm edge distance, the occurrence of local buckling contributes to decrease of lateral buckling section capacity to 19.943 kNm, where pure lateral-torsional buckling mostly occurred because of prevented section. Besides that, the web opening diameter was also analysed. The web crippling was observed because of the increase of opening diameter from 0.67 to 0.80 D.

Originality/value

This contributes to a decrease in buckling capacity as figured in the contour of the deformed shape. For Model 1, an increase of buckling capacity (31.46%) is observed when the opening diameter are changed from 0.67 to 0.80 D.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 630