Search results

1 – 10 of over 1000
Article
Publication date: 6 November 2017

Chao Zhang and Hong-Sen Yan

The purpose of this paper is to propose a new control strategy based on adaptive inverse control aiming at high performance control of permanent magnet synchronous motor (PMSM).

Abstract

Purpose

The purpose of this paper is to propose a new control strategy based on adaptive inverse control aiming at high performance control of permanent magnet synchronous motor (PMSM).

Design/methodology/approach

This scheme adopts the vector control with double closed-loop structure and introduces a multi-dimensional Taylor network (MTN) inverse control method into velocity-loop. First, the invertibility of PMSM’s mathematical model is proved. Second, a novel dynamic network (MTN) is presented, which has simple structure and faster computing speed. Besides, to realize the high-precision speed control, three MTNs are applied to achieve system modeling, inverse modeling and noise disturbance elimination which correspond to the function of the adaptive identifier, adaptive feed-forward controller and nonlinear adaptive filter, respectively.

Findings

This scheme is designed with the full consideration of the PMSM’s particularity. For the PMSM’s unknown dynamics and time-varying characteristics, the variable forgetting factor recursive least squares algorithm is adopted to improve identification ability, and the weight-elimination algorithm is used to remove redundant regression items in the MTN identifier and inverse controller. In addition, to reduce the influence arose from measurement noise and other stochastic factors, adaptive MTN filter is introduced to eliminate noise disturbance. The computational results show that the proposed scheme possesses excellent control performance and better robustness against the load disturbance.

Originality/value

The paper presents a new inverse control scheme with MTN which is practical and flexible, and the MTN-based control system is very promising for real-time applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Diana D.C. and Joy Vasantha Rani S.P.

Adaptive equalization plays an important role in digital communication to reduce the distortions due to inter-symbol interference. An adaptive filter is used as an equalizer model…

Abstract

Purpose

Adaptive equalization plays an important role in digital communication to reduce the distortions due to inter-symbol interference. An adaptive filter is used as an equalizer model in channel equalization. An adaptive algorithm is the heart of the adaptive filter which finds the optimum coefficients of the filter. The choice of the adaptive algorithm improves the convergence rate and minimizes the mean square error (MSE). This paper aims to propose a cat swarm optimization (CSO)-based adaptive algorithm and its modification to improve the performance of a channel equalizer.

Design/methodology/approach

The input digital training data are transmitted through different channel conditions. A linear transversal filter is used as a channel and equalizer model. The equalizer coefficients are trained by the proposed simplified cat swarm optimization (SCSO) algorithm to find the estimated digital training data.

Findings

The performance of the proposed SCSO algorithm is compared with particle swarm optimization (PSO)-based channel equalization. The improvement in convergence rate and MSE is verified under linear and nonlinear channel conditions with different delay spreads. The optimum parameters of the SCSO are found using simulation-based sensitivity analysis.

Originality/value

This paper analyzes a CSO algorithm for adaptive channel equalization and proposes a SCSO algorithm to identify the optimum coefficients of a transversal equalizer. The seeking mode process is simplified in the proposed SCSO to achieve better performance in channel equalization. The proposed SCSO algorithm guarantees minimum MSE in all independent runs, whereas in PSO, few misses are possible.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 August 2018

Sami Elferik, Mohammed Hassan and Mustafa AL-Naser

The purpose of this paper is to improve the performance of control loop suffering from control valve stiction. Control valve stiction is considered as of one of the main causes of…

Abstract

Purpose

The purpose of this paper is to improve the performance of control loop suffering from control valve stiction. Control valve stiction is considered as of one of the main causes of oscillation in process variables, which require performing costly unplanned maintenance and process shutdown. An adaptive solution to handle valve stiction while maintaining safety and quality until next planned maintenance is highly desirable to save considerable cost and effort.

Design/methodology/approach

This paper implements a new stiction compensation method built using adaptive inverse model techniques and intelligent control theories. Finite impulse response (FIR) model, which is known to be robust, as a compensator for stiction. The parameters of FIR model are tuned in an adaptive way using differential evolution (DE) technique. The performance of proposed method is compared with other two compensation techniques.

Findings

The new method showed excellent performance of the DE–FIR compensator compared to other dynamic inversion methods in terms of minimizing process variability, energy saving and valve stem aggressiveness.

Research limitations/implications

The compensation ability for all compensators reduces with the increase of stiction severity, thus the over shoot case always shows the worst result. In future works, other optimization techniques will be explored to find the appropriate technique that can extend the FIR model size with smallest computation time that can improve the performance of the compensator in over shoot case. In addition, the estimation of the valve residual life based on the level of stiction and effort required by the controller should be considered.

Originality/value

The presented approach represents an original contribution to the literature. It performs stiction compensation without a need for a prior knowledge on the process or the valve models and guarantees a smooth control of the stem movement with a low control effort. The proposed approach differs from previous adaptive methods as it uses stable FIR models and DE to find the appropriate parameters of the inverse model and handle nonlinear behavior of stiction.

Details

Journal of Quality in Maintenance Engineering, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 22 August 2008

Hadi Sadoghi Yazdi and Seyyed Ebrahim Hosseini

The purpose of this paper is to present research in the area of the signal processing and application into pedestrian tracking in the video scene.

Abstract

Purpose

The purpose of this paper is to present research in the area of the signal processing and application into pedestrian tracking in the video scene.

Design/methodology/approach

The paper describes the design of a new extended Kalman filter (EKF) in the high‐dimensional space (HDS) and studies of mean square error and variance analysis of error. A design algorithm is implemented in MATLAB software and tested. The data set includes many hours of captured films.

Findings

This paper includes a new derivation of the EKF and its implementation into the video scene.

Practical implications

The proposed algorithm can be used to track each video application.

Originality/value

The Kalman filter in the HDS is presented for the first time. Also, the application of the proposed method is applied in pedestrian tracking and counting.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 November 2018

Seyed Reza Aali, Mohammad Reza Besmi and Mohammad Hosein Kazemi

The purpose of this paper is to study variation regularization with a positive sequence extraction-normalized least mean square (VRP-NLMS) algorithm for frequency estimation in a…

Abstract

Purpose

The purpose of this paper is to study variation regularization with a positive sequence extraction-normalized least mean square (VRP-NLMS) algorithm for frequency estimation in a three-phase electrical distribution system. A simulation test is provided to validate the performance and convergence rate of the proposed estimation algorithm.

Design/methodology/approach

Least mean square (LMS) algorithms for frequency estimation encounter problems when voltage contains unbalance, sags and harmonic distortion. The convergence rate of the LMS algorithm is sensitive to the adjustment of the step-size parameter used in the update equation. This paper proposes VRP-NLMS algorithm for frequency estimation in a power system. Regularization parameter is variable in the NLMS algorithm to adjust step-size parameter. Delayed signal cancellation (DSC) operator suppresses harmonics and negative sequence component of the voltage vector in a two-phase Î ± β plane. The DSC part is placed in front of the NLMS algorithm as a pre-filter and a positive sequence of the grid voltage is extracted.

Findings

By adapting of the step-size parameter, speed and accuracy of the LMS algorithm are improved. The DSC operator is augmented to the NLMS algorithm for more improvement of the performance of this adaptive filter. Simulation results validate that the proposed VRP-NLMS algorithm has a less misalignment of performance with more convergence rate.

Originality/value

This paper is a theoretical support to simulated system performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 July 2019

Youshuang Ding, Xi Xiao, Xuanrui Huang and Jiexiang Sun

This paper aims to propose a novel system identification and resonance suppression strategy for motor-driven system with high-order flexible manipulator.

Abstract

Purpose

This paper aims to propose a novel system identification and resonance suppression strategy for motor-driven system with high-order flexible manipulator.

Design/methodology/approach

In this paper, first, a unified mathematical model is proposed to describe both the flexible joints and the flexible link system. Then to suppress the resonance brought by the system flexibility, a model based high-order notch filter controller is proposed. To get the true value of the parameters of the high-order flexible manipulator system, a fuzzy-Kalman filter-based two-step system identification algorithm is proposed.

Findings

Compared to the traditional system identification algorithm, the proposed two-step system identification algorithm can accurately identify the unknown parameters of the high order flexible manipulator system with high dynamic response. The performance of the two-step system identification algorithm and the model-based high-order notch filter is verified via simulation and experimental results.

Originality/value

The proposed system identification method can identify the system parameters with both high accuracy and high dynamic response. With the proposed system identification and model-based controller, the positioning accuracy of the flexible manipulator can be greatly improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 January 2023

Yanqing Shi, Hongye Cao and Si Chen

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of…

Abstract

Purpose

Online question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.

Design/methodology/approach

The authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.

Findings

There are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.

Originality/value

This study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.

Details

Aslib Journal of Information Management, vol. 76 no. 1
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 20 April 2020

Ananthan Nagarajan, Sivachandran P., Suganyadevi M.V. and Muthukumar P.

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Abstract

Purpose

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Design/methodology/approach

The work carried out in the Facts device and power quality issues.

Findings

Maintaining the quality of electric power is always a challenging task. The effect of power electronics devices leads to improper power quality. The use of FACTS devices is preferably the best approach to treat power-quality-related problems. Usually, all FACTS devices are constructed to operate on the side of either the source side or the load.

Originality/value

This paper explores a broad comprehensive study of various types of power quality problems and classification of FACTS devices with its recent developments. Furthermore unified power quality conditioner (UPQC) is particularly reviewed to highlight the advantages over other compensating devices. An exhaustive study of literature has been carried out and most significant concepts are presented

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 August 1999

Ralf Östermark, Rune Höglund and Henrik Saxén

In this paper we try to assess how a weighted shares index and corresponding futures index respond to a change in the short‐term interest rate. Three methods are applied in…

Abstract

In this paper we try to assess how a weighted shares index and corresponding futures index respond to a change in the short‐term interest rate. Three methods are applied in analysing the data: an error correction regression method, a state space method and a neural network method. Results indicate presence of cointegration in the data set. A sensitivity analysis of each model was carried out by studying the evolution of the predictions after the studied time period, using deterministic values of the inputs. An analysis of the influence of an interest rate shock yielded interesting results. In the neural network model, again, more complicated response patterns were observed.

Details

Kybernetes, vol. 28 no. 6/7
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 October 2012

Dongxiao Niu, Ling Ji, Yongli Wang and Da Liu

The purpose of this paper is to improve the accuracy of short time load forecasting to ensure the economical and safe operation of power systems. The traditional neural network…

Abstract

Purpose

The purpose of this paper is to improve the accuracy of short time load forecasting to ensure the economical and safe operation of power systems. The traditional neural network applied in time series like load forecasting, easily plunges into local optimum and has a complicated learning process, leading to relatively slow calculating speed. On the basis of existing literature, the authors carried out studies in an effort to optimize a new recurrent neural network by wavelet analysis to solve the previous problems.

Design/methodology/approach

The main technique the authors applied is referred to as echo state network (ESN). Detailed information has been acquired by the authors using wavelet analysis. After obtaining more information from original time series, different reservoirs can be built for each subsequence. The proposed method is tested by using hourly electricity load data from a southern city in China. In addition, some traditional methods are also applied for the same task, as contrast.

Findings

The experiment has led the authors to believe that the optimized model is encouraging and performs better. Compared with standard ESN, BP network and SVM, the experimental results indicate that WS‐ESN improves the prediction accuracy and has less computing consumption.

Originality/value

The paper develops a new method for short time load forecasting. Wavelet decomposition is employed to pre‐process the original load data. The approximate part associated with low frequencies and several detailed parts associated with high frequencies components give expression to different information from original data. According to this, suitable ESN is chosen for each sub‐sequence, respectively. Therefore, the model combining the advantages of both ESN and wavelet analysis improves the result for short time load forecasting, and can be applied to other time series problem.

1 – 10 of over 1000