Search results

1 – 10 of 54
Article
Publication date: 26 August 2014

Anjali Verma, Ram Jiwari and Satish Kumar

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find…

Abstract

Purpose

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find the numerical solutions of nonlinear Klein-Gordon equation with Dirichlet and Neumann boundary condition.

Design/methodology/approach

In first step, time derivative is discretised by forward difference method. Then, quasi-linearisation process is used to tackle the non-linearity in the equation. Finally, fully discretisation by differential quadrature method (DQM) leads to a system of linear equations which is solved by Gauss-elimination method.

Findings

The accuracy of the proposed method is demonstrated by several test examples. The numerical results are found to be in good agreement with the exact solutions and the numerical solutions exist in literature. The proposed scheme can be expended for multidimensional problems.

Originality/value

The main advantage of the present scheme is that the scheme gives very accurate and similar results to the exact solutions by choosing less number of grid points. Secondly, the scheme gives better accuracy than (Dehghan and Shokri, 2009; Pekmen and Tezer-Sezgin, 2012) by choosing less number of grid points and big time step length. Also, the scheme can be extended for multidimensional problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1996

Jacqueline R. Postle and Ron Postle

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a…

Abstract

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a fabric can be completely specified in terms of its mechanical behaviour under general boundary conditions. Fabric deformation is dynamically analogous to waves travelling in a fluid. A localized two‐dimensional deformation evolves through the fabric to form a three‐dimensional drape or fold configuration. The nonlinear differential equations arising in the analysis of fabric deformation belong to the Klein‐Gordon family of equations which becomes the sine‐Gordon equation in three dimensions. The sine‐Gordon equation has its origins in the study of Bäcklund Transformations in differential geometry. Describes fabric deformation as a series of transformations of surfaces, defined in terms of curvature parameters using Gaussian representation of surfaces. By considering a deformed fabric as a two‐dimensional surface, algebraically constructs analytical solutions of fabric deformation by solving the sine‐Gordon Equation. The theory of Bäcklund Transformations is used to transform a trivial solution into a series of solitary wave solutions. These analytical expressions describing the curvature parameters of a surface represent actual solutions of fabric dynamical systems.

Details

International Journal of Clothing Science and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 1 August 1998

Ron Postle and Jacqueline Rebecca Postle

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include…

Abstract

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include complicated boundary conditions. However, the approximations and assumptions which form the basis of engineering models make them inappropriate for textile materials. Very small stresses on textile materials cause extremely large strains so that the deformations are highly nonlinear. In this paper, we develop a nonlinear mathematical method. In the final section, the nonlinear differential equations used are generalised into a nonlinear evolution equation which is completely integrable and thus solved analytically obtaining dynamical solution for three‐dimensional fabric drape. These analytical solutions are applicable under all conditions and are not subject to computational difficulties associated with finding numerical solutions for highly nonlinear problems. The use of this analytical approach to fabric mechanics and dynamics provides us with a very powerful tool to formulate and solve many long‐standing problems in fabric and clothing technology.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 June 2017

Ali Saleh Alshomrani, Sapna Pandit, Abdullah K. Alzahrani, Metib Said Alghamdi and Ram Jiwari

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type…

Abstract

Purpose

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations. These types of equations describe a variety of physical models in the vibrations of structures, nonlinear optics, quantum field theory and solid-state physics, etc.

Design/methodology/approach

Dirichlet boundary conditions cannot be handled easily by cubic trigonometric B-spline functions. Then, a modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and a numerical algorithm is developed. The proposed algorithm reduced the hyperbolic-type wave equations into a system of first-order ordinary differential equations (ODEs) in time variable. Then, stability-preserving SSP-RK54 scheme and the Thomas algorithm are used to solve the obtained system. The stability of the algorithm is also discussed.

Findings

A different technique based on modified cubic trigonometric B-spline functions is proposed which is quite different from the schemes developed (Abbas et al., 2014; Nazir et al., 2016) and depicts the computational modelling of hyperbolic-type wave equations.

Originality/value

To the best of the authors’ knowledge, this technique is novel for solving hyperbolic-type wave equations and the developed algorithm is free from quasi-linearization process and finite difference operators for time derivatives. This algorithm gives better results than the results discussed in literature (Dehghan and Shokri, 2008; Batiha et al., 2007; Mittal and Bhatia, 2013; Jiwari, 2015).

Article
Publication date: 2 December 2020

Ömer Oruç

The purpose of this paper is to obtain accurate numerical solutions of two-dimensional (2-D) and 3-dimensional (3-D) Klein–Gordon–Schrödinger (KGS) equations.

Abstract

Purpose

The purpose of this paper is to obtain accurate numerical solutions of two-dimensional (2-D) and 3-dimensional (3-D) Klein–Gordon–Schrödinger (KGS) equations.

Design/methodology/approach

The use of linear barycentric interpolation differentiation matrices facilitates the computation of numerical solutions both in 2-D and 3-D space within reasonable central processing unit times.

Findings

Numerical simulations corroborate the efficiency and accuracy of the proposed method.

Originality/value

Linear barycentric interpolation method is applied to 2-D and 3-D KGS equations for the first time, and good results are obtained.

Article
Publication date: 6 November 2017

Sapna Pandit, Ram Jiwari, Karan Bedi and Mehmet Emir Koksal

The purpose of this study is to develop an algorithm for approximate solutions of nonlinear hyperbolic partial differential equations.

Abstract

Purpose

The purpose of this study is to develop an algorithm for approximate solutions of nonlinear hyperbolic partial differential equations.

Design/methodology/approach

In this paper, an algorithm based on the Haar wavelets operational matrix for computational modelling of nonlinear hyperbolic type wave equations has been developed. These types of equations describe a variety of physical models in nonlinear optics, relativistic quantum mechanics, solitons and condensed matter physics, interaction of solitons in collision-less plasma and solid-state physics, etc. The algorithm reduces the equations into a system of algebraic equations and then the system is solved by the Gauss-elimination procedure. Some well-known hyperbolic-type wave problems are considered as numerical problems to check the accuracy and efficiency of the proposed algorithm. The numerical results are shown in figures and Linf, RMS and L2 error forms.

Findings

The developed algorithm is used to find the computational modelling of nonlinear hyperbolic-type wave equations. The algorithm is well suited for some well-known wave equations.

Originality/value

This paper extends the idea of one dimensional Haar wavelets algorithms (Jiwari, 2015, 2012; Pandit et al., 2015; Kumar and Pandit, 2014, 2015) for two-dimensional hyperbolic problems and the idea of this algorithm is quite different from the idea for elliptic problems (Lepik, 2011; Shi et al., 2012). Second, the algorithm and error analysis are new for two-dimensional hyperbolic-type problems.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2018

Neeraj Dhiman and Mohammad Tamsir

The purpose of this paper is to present a new method, namely, “Re-modified quintic B-spline collocation method” to solve the Kuramoto–Sivashinsky (KS) type equations. In this…

Abstract

Purpose

The purpose of this paper is to present a new method, namely, “Re-modified quintic B-spline collocation method” to solve the Kuramoto–Sivashinsky (KS) type equations. In this method, re-modified quintic B-spline functions and the Crank–Nicolson formulation is used for space and time integration, respectively. Five examples are considered to test out the efficiency and accuracy of the method. The main objective is to develop a method which gives more accurate results and reduces the computational cost so that the authors require less memory storage.

Design/methodology/approach

A new collocation technique is developed to solve the KS type equations. In this technique, quintic B-spline basis functions are re-modified and used to integrate the space derivatives while time derivative is discretized by using Crank–Nicolson formulation. The discretization yields systems of linear equations, which are solved by using Gauss elimination method with partial pivoting.

Findings

Five examples are considered to test out the efficiency and accuracy of the method. Finally, the present study summarizes the following outcomes: first, the computational cost of the proposed method is the less than quintic B-spline collocation method. Second, the present method produces better results than those obtained by Lattice Boltzmann method (Lai and Ma, 2009), quintic B-spline collocation method (Mittal and Arora, 2010), quintic B-spline differential quadrature method (DQM) (Mittal and Dahiya, 2017), extended modified cubic B-spline DQM (Tamsir et al., 2016) and modified cubic B-splines collocation method (Mittal and Jain, 2012).

Originality/value

The method presented in this paper is new to best of the authors’ knowledge. This work is the original work of authors and the manuscript is not submitted anywhere else for publication.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 October 2023

Sapna Pandit, Pooja Verma, Manoj Kumar and Poonam

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential…

Abstract

Purpose

This article offered two meshfree algorithms, namely the local radial basis functions-finite difference (LRBF-FD) approximation and local radial basis functions-differential quadrature method (LRBF-DQM) to simulate the multidimensional hyperbolic wave models and work is an extension of Jiwari (2015).

Design/methodology/approach

In the evolvement of the first algorithm, the time derivative is discretized by the forward FD scheme and the Crank-Nicolson scheme is used for the rest of the terms. After that, the LRBF-FD approximation is used for spatial discretization and quasi-linearization process for linearization of the problem. Finally, the obtained linear system is solved by the LU decomposition method. In the development of the second algorithm, semi-discretization in space is done via LRBF-DQM and then an explicit RK4 is used for fully discretization in time.

Findings

For simulation purposes, some 1D and 2D wave models are pondered to instigate the chastity and competence of the developed algorithms.

Originality/value

The developed algorithms are novel for the multidimensional hyperbolic wave models. Also, the stability analysis of the second algorithm is a new work for these types of model.

Article
Publication date: 14 September 2012

R.C. Mittal and Ram Jiwari

The purpose of this paper is to use the polynomial differential quadrature method (PDQM) to find the numerical solutions of some Burgers'‐type nonlinear partial differential…

Abstract

Purpose

The purpose of this paper is to use the polynomial differential quadrature method (PDQM) to find the numerical solutions of some Burgers'‐type nonlinear partial differential equations.

Design/methodology/approach

The PDQM changed the nonlinear partial differential equations into a system of nonlinear ordinary differential equations (ODEs). The obtained system of ODEs is solved by Runge‐Kutta fourth order method.

Findings

Numerical results for the nonlinear evolution equations such as 1D Burgers', coupled Burgers', 2D Burgers' and system of 2D Burgers' equations are obtained by applying PDQM. The numerical results are found to be in good agreement with the exact solutions.

Originality/value

A comparison is made with those which are already available in the literature and the present numerical schemes are found give better solutions. The strong point of these schemes is that they are easy to apply, even in two‐dimensional nonlinear problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 54