Search results

1 – 3 of 3
Article
Publication date: 8 May 2018

Reza Mirzahosseini, Ahmad Darabi and Mohsen Assili

Consideration of leakage fluxes in the preliminary design stage of a machine is important for accurate determination of machine dimensions and prediction of performance…

Abstract

Purpose

Consideration of leakage fluxes in the preliminary design stage of a machine is important for accurate determination of machine dimensions and prediction of performance characteristics. This paper aims to obtain some equations for calculating the average air gap flux density, the flux density within the magnet and the air gap leakage flux factor.

Design/methodology/approach

A detailed magnetic equivalent circuit (MEC) is presented for a TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machine. In this MEC, the leakage flux occurring between two adjacent magnets and the leakage fluxes taking place between the magnet and rotor iron at the interpolar, inner and outer edges of the magnets are considered. According to the proposed MEC and by using flux division law, some equations are extracted. A three-dimensional finite element method (FEM) is used to evaluate the proposed analytical equations. The study machine is a 3.7 kW and 1,400 rpm TORUS-NS AFPM machine.

Findings

The air gap leakage flux factor, the average air gap flux density and the flux density within the magnet are calculated using the proposed equations and FEM. All the results of FEM confirm the excellent accuracy of the proposed analytical method.

Originality/value

The new equations presented in this paper can be applied for leakage flux evaluating purposes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Mohammadreza Baghayipour, Ahmad Darabi and Ali Dastfan

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial

Abstract

Purpose

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machines with surface-mounted magnets considering the winding distribution and iron saturation effects.

Design/methodology/approach

First, a procedure to calculate the winding distribution with a rectangular cross-section is proposed. The magnetic field distribution and magnetic motive force (MMF) drop due to saturation in iron cores are then exactly extracted in a 2-D analytical model. The consequent influence on air-gap magnetic field and Back EMF are also calculated using a new iterative algorithm. The results are compared with those of the conventional analytical model without saturation, 2-D finite element analysis (FEA) and an experiment on a fabricated prototype machine.

Findings

Unlike the conventional method, the new method yields the no-load magnetic field distributions in air-gap and iron cores and Back EMF very exactly such that the results well match to those of the FEA and experiment.

Originality/value

Unlike the conventional winding factor, the winding distribution is considered here along the both axial and circumferential directions, which improves the accuracy level of results for non-slotted structures with relatively large air-gaps. The magnetic field distribution and MMF drop-in iron parts are also calculated as the basis for exact recalculation of air-gap magnetic field and Back EMF. Because of small computational burden beside superior accuracy, the proposed model can be treated as an accurate and fast substitute for FEA to be used during the design procedure or for predicting the other performance characteristics of TORUS-NS AFPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 November 2022

Hadi Karimi Aliabad and Mohammadreza Baghayipour

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets

Abstract

Purpose

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets (PMs) demagnetization reduction.

Design/methodology/approach

At first, a primitive raw scheme of the new structure for the LSAFPM motor is introduced. Considering this raw scheme, the levels of irreversible demagnetization in various regions throughout the entire volume of each PM are evaluated using 3 dimensional (3D) finite elements analysis (3D FEA) in full loading condition during startup until reaching steady state. Based on the results of these analyses, the primitive structural scheme is then modified through segmenting (cutting into four pieces) each PM from where the worst irreversible demagnetization levels occurred.

Findings

As will be demonstrated by the results of 3D FEA, the proposed modified structure is not only capable of successful startup and synchronization of the motor but also it considerably reduces the PM demagnetization level. Thus, the performance of the motor is significantly improved.

Originality/value

The demagnetization of PMs is an important effect in PM synchronous motors, which can greatly affect motor performance. Therefore, it is necessary to be considered in the motor design processes. This effect becomes much more significant in the line-start PM motors because the usual high-magnitude startup induction current produces a strong armature-reaction magnetic field, which may cause the PMs to be irreversibly demagnetized. The approach proposed in this paper provides a structural solution to mitigate the PM demagnetization effect and thereby improve the performance of an LSAFPM motor through modifying the structure of the LSAFPM motor according to an FEA-based PM demagnetization analysis. As a considerable contribution, in this analysis, the variation of demagnetization level between different areas inside each PM is computed and is considered as a basis for proposing an appropriate structural modification to mitigate the PM demagnetization effect as much as possible.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3