Search results

1 – 10 of 50
Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

19

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 February 2023

Tahir Naseem and Azeem Shahzad

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by…

Abstract

Purpose

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by considering magnetic, Joule heating and viscous dissipation effects. Furthermore, it studies the irreversibility caused by the flow of a hydromagnetic nanofluid past a radiated stretching sheet by considering different shapes of TiO2 and Cu nanoparticles with water as the base fluid.

Design/methodology/approach

In this study, the authors investigated entropy production in an unsteady two-dimensional magneto-hydrodynamic nanofluid regime using water as the base fluid and five unique TiO2 and Cu nanoparticle morphologies. Using appropriate similarity transformations, the controlling nonlinear system of partial differential equations is transformed into a system of ordinary differential equations. The shooting technique with Runge–Kutta method was then used to solve these equations quantitatively. The findings of this study are depicted graphically, and the skin friction corresponding to various nanoparticle geometries and physical parameter variations is tabulated.

Findings

To assess the reliability of the current findings, a tabular representation of the data was compared to that of previously published studies. It is noted that a reduction in thermal energy was detected as a result of the higher levels of Prandtl number (Pr). It is further analysed that the highest heat energy generation of TiO2 nanoparticles was larger than that of Cu nanoparticles. The most important finding was that the sphere-shaped Cu/H2O nanofluid had the lowest velocity and greatest temperature. Also, Cu nanoparticles in the shape of platelets generate the most entropy, while TiO2 nanoparticles in the shape of spheres generate the least.

Originality/value

To the best of the knowledge of the authors, the attempt to investigate the previously unexplored shape effects of TiO2 and Cu nanoparticles on the heat transfer enhancement and inherent irreversibility caused by hydromagnetic nanofluid flow past a radiated stretching sheet with magnetic, Joule heating and viscous dissipation effects. This study fills this gap in the existing literature and encourages scientists, engineers and businesses to do more research in this area. This model can be used to improve heat transfer in systems that use renewable energy, thermal management in industry and the processing of materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 July 2023

Amit Kumar, Abhipsa P. Dash, Atul Kumar Ray, Priyabrata Sethy and Idamakanti Kasireddy

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different…

Abstract

Purpose

This study aims to examine the flow of unsteady mixed convective hybrid nanofluid over a rotating sphere with heat generation/absorption. The hybrid nanofluid contains different shapes of nanoparticles (copper [Cu] and aluminium oxide [Al2O3]) in the base fluid (water [H2O]). The influence of different shapes (sphere, brick, cylinder, platelets and blades) of nanoparticle in water-based hybrid nanofluid is also investigated.

Design/methodology/approach

To analyse the nanomaterial, the flow model is established, and in doing so, the Prandtl’s boundary layer theory is incorporated into the present model. The bvp4c approach, i.e. finite difference method, is used to find the numerical solution of differential equations that is controlling the fluid flow. The effect of relevant flow parameters on nanofluid temperature and velocity profile is demonstrated in detailed explanations using graphs and bar charts, whereas numerical results for Nusselt number and the skin’s coefficient for various form parameters are presented in tabular form.

Findings

The rate of heat transfer is least for spherical-shaped nanoparticle because of its smoothness, symmetricity and isotropic behaviour. The rate of heat transfer is highest for blade-shaped nanoparticles as compared to other shapes (brick, cylindrical and platelet) of nanoparticles because the blade-shaped nanoparticles causes comparatively more turbulence flow in the nanofluid than other shapes of nanoparticle. Heat generation affects the temperature distribution and, hence, the particle deposition rate. The absorption of heat extracts heat and reduce the temperature across the rotating sphere. The heat generation/absorption parameter plays an important role in establishing and maintaining the temperature around the rotating sphere.

Research limitations/implications

The numerical study is valid with the exception of the fluctuation in density that results in the buoyancy force and the functional axisymmetric nanofluid transport has constant thermophysical characteristics. In addition, this investigation is also constrained by the assumptions that there is no viscosity dissipation, no surface slippage and no chemically activated species. The hybrid nanofluid Al2O3–Cu/H2O is an incompressible and diluted suspension. The single-phase hybrid nanofluid model is considered in which the relative velocity of water (H2O) and hybrid nanoparticles (Al2O3–Cu) is the same and they are in a state of thermal equilibrium.

Practical implications

Study on convective flow across a revolving sphere has its applications found in electrolysis management, polymer deposition, medication transfer, cooling of spinning machinery segments, spin-stabilized missiles and other industrial and technical applications.

Originality/value

The originality of the study is to investigate the effect of shape factor on the flow of electrically conducting hybrid nanofluid past a rotating sphere with heat generation/absorption and magnetic field. The results are validated and provide extremely positive balance with the recognised articles. The results of the study provide many appealing applications that merit further study of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 June 2023

Noura Alsedais, Amal Al-Hanaya and Abdelraheem M. Aly

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by…

Abstract

Purpose

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by oxytactic microorganisms and nano-encapsulated phase change materials.

Design/methodology/approach

The modified ISPH method based on the time-fractional derivative is applied to solve the regulating equations in Lagrangian dimensionless forms. The pertinent factors are bioconvection Rayleigh number Rab (1–100), circular cylinder’s radius Rc (0.1–0.3), fractional time derivative α (0.95–1), Darcy parameter Da (10−5–10−2), nanoparticle parameter ϕ (0–0.1), Hartmann number Ha (0–50), Lewis number Le (1–20), Peclet number Pe (0.1–0.75), s (0.1–0.9), number of cylinders NCylinders (1–4), Rayleigh number Ra (103–106) and fusion temperature θf (0.005–0.9).

Findings

The simulations revealed that there is a strong enhancement in the velocity field according to an increase in Rab. The intensity and location of the phase zone change in response to changes in θf. The time-fractional derivative a acting on a nanofluid velocity and flow characteristics in an annulus. The number of embedded cylinders NCylinders is playing a significant role in the cooling processes and as NCylinders increases from 1 to 4, the velocity field’s maximum reduces by almost 33.3%.

Originality/value

The novelty of this study is examining the impacts of the magnetic field and the presence of several numbers of embedded cylinders on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Hamza Berrehal, Roshanak Karami, Saeed Dinarvand, Ioan Pop and Ali Chamkha

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone…

Abstract

Purpose

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone, with linear surface temperature (LST) and linear surface heat flux (LSHF), in the presence of a cross-magnetic field. In industrial applications, such as oil and gas plants, food industries, steel factories and nuclear packages, the real bodies may contain nonorthogonal walls and variable cross-section three-dimensional forms which this issue can clarify the importance of selective geometry in the present research.

Design/methodology/approach

The mass-based scheme is accomplished for the simulation, and the entropy generation and Bejan number will be analyzed in conjunction with the aforementioned model. It has been hypothesized that two types of boundary conditions (LST and LSHF) as well as five nanoparticle shapes (sphere, brick, cylinder, platelet and disk) present a collection of crucial results. The overseeing PDEs are changed over completely to the dimensionless ODEs, and these are solved by Runge–Kutta–Fehlberg approach combined with a shooting methodology for certain values of physical parameters.

Findings

Subsequent to the fantastic compromise of the computational outcomes with past reports, the outcomes are introduced to conduct the investigation of the hydrodynamics/thermal boundary layers, the skin friction and the Nusselt number, as well as entropy generation and Bejan number. A state of hybrid nanofluid, which exhibits a remarkable increase in heat transfer in comparison to the states of mono-nanofluid and regular fluid, has been found to have the highest Nusselt number; however, the skin friction values should always be taken into account and managed. The entropy generation improves with the mass of the second nanoparticle (silver), while the opposite pattern is exhibited for the Bejan number. Furthermore, the lowest value of entropy generation number belongs to the cylindrical shape of nanoparticles in the LST case. In final, a significant accomplishment of the current study is the accurate output of the mass-based scheme for an entropy analysis problem.

Originality/value

To the best of the authors’ knowledge, for the first time, in this study, a new development of natural convective flow of a hybrid nanofluid about the warmed (LST and LSHF) and down-pointing rotating vertical cone by the mass-based algorithm has been presented. The applied methodology considers the masses of base fluid (water) and nanoparticles (Ag and CuO) as an alternative to the first and second nanoparticles volume fraction. Indeed, the combination use of the Tiwari–Das nanofluid model and the mass-based hybridity algorithm for the entropy generation analysis can be the main novelty of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Deepika Parmar, S.V.S.S.N.V.G. Krishna Murthy, B.V. Rathish Kumar and Sumant Kumar

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures…

Abstract

Purpose

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures, such as triangle, L-shape and square-containing wavy surfaces. These porous enclosures are saturated with Cu-water nanofluid and subjected to the influence of a uniform magnetic field.

Design/methodology/approach

In the present study, Darcy’s model is used for the momentum transport equation in the porous matrix. Additionally, the Caputo time fractional derivative is introduced in the energy equation to assess the heat transfer phenomenon. Furthermore, the total entropy generation has been computed by combining the entropy generation due to fluid friction (Sff), heat transfer (Sht) and magnetic field (Smf). The complete mathematical model is further simulated using the penalty finite element method, and the Caputo time derivative term is approximated using the L1 scheme. The study is conducted for various ranges of the Rayleigh number (102Ra104), Hartmann number (0Ha20) and fractional order parameter (0<α<1) with respect to time.

Findings

It has been observed that the fractional order parameter α governs the characteristics of entropy generation and heat transfer within the selected range of parameters. The Bejan number associated with heat transfer (Beht), fluid friction (Beff) and magnetic field (Bemf) further demonstrate the dominance of flow irreversibilities. It becomes evident that the initial evolution state of streamlines, isotherms and local entropy varies according to the choice of α. Additionally, increasing Ra values from 102 to 104 shows that the heat transfer rate increases by 123.8% for a square wavy enclosure, 7.4% for a triangle enclosure and 69.6% for an L-shape enclosure. Moreover, an increase in the value of Ha leads to a reduction in heat transfer rates and entropy generation. In this case, Bemf1 shows the dominance of the magnetic field irreversibility in the total entropy generation.

Practical implications

Recently, fractional-order models have been widely used to express numerous physical phenomena, such as anomalous diffusion and dispersion in complex viscoelastic porous media. These models offer a more accurate representation of physical reality that classical models fail to capture; this is why they find a broad range of applications in science and engineering.

Originality/value

The fractional derivative model is used to illustrate the flow pattern, heat transfer and entropy-generating characteristics under the influence of a magnetic field. Furthermore, to the best of the author’s knowledge, a fractional-derivative-based mathematical model for the entropy generation phenomenon in complex porous enclosures has not been previously developed or studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 50