Search results

1 – 10 of 14
Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

24

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms.

Abstract

Purpose

The purpose of this study is to investigate the Dynamics of micropolar – water B Fluids flow simultaneously under the influence of thermal radiation and Soret–Dufour Mechanisms.

Design/methodology/approach

The thermal radiation contribution, the chemical change and heat generation take fluidity into account. The flow equations are used to produce a series of dimensionless equations with appropriate nondimensional quantities. By using the spectral homotopy analysis method (SHAM), simplified dimensionless equations have been quantitatively solved. With Chebyshev pseudospectral technique, SHAM integrates the approach of the well-known method of homotopical analysis to the set of altered equations. In terms of velocity, concentration and temperature profiles, the impacts of Prandtl number, chemical reaction and thermal radiation are studied. All findings are visually shown and all physical values are calculated and tabulated.

Findings

The results indicate that an increase in the variable viscosity leads to speed and temperature increases. Based on the transport nature of micropolar Walters B fluids, the thermal conductivity has great impact on the Prandtl number and decrease the velocity and temperature. The current research was very well supported by prior literature works. The results in this paper are anticipated to be helpful for biotechnology, food processing and boiling. It is used primarily in refrigerating systems, tensile heating to large-scale heating and oil pipeline reduction.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 February 2024

Sergejs Pavlovs, Andris Jakovičs and Alexander Chudnovsky

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Abstract

Purpose

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Design/methodology/approach

A mini DC EAF was designed, manufactured and installed to study the industrial processes of heating and melting a small amount of melt, being 4.6 kg of steel in the case under study. Numerical modelling of metal melting was performed using the enthalpy and porosity approach at equal values and non-equal values of the solidus and liquidus temperatures of the metal. The EVF of the liquid phase of metal was computed using the large eddy simulation model of turbulence. Melt temperature measurements were made using an infrared camera and a probe with a thermocouple sensor. The melt speed was estimated by observing the movement of particles at the top surface of melt.

Findings

The thermal flux for metal heating and melting, which is supplied through an arc spot at the top surface of metal, is estimated using the thermal balance of the furnace at melting point. The melting time was estimated using numerical modelling of heating and melting of metal. The process started at room temperature and finished once whole volume of metal was molten. The evolution of the solid/melt phase boundary as well as evolution of EVF patterns of the melt was studied.

Originality/value

Numerical studies of heating and melting processes in metal were performed in the case of intensive liquid phase turbulent circulation due to the Lorentz force in the melt, which results from the interaction of electrical current with a self-magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 January 2023

Isabelle Y.S. Chan and Hao Chen

Due to land resource scarcity, sustainable urban development in high-density cities has long been challenging. As such, many cities are formulating plans to “dig deep”, resulting…

Abstract

Purpose

Due to land resource scarcity, sustainable urban development in high-density cities has long been challenging. As such, many cities are formulating plans to “dig deep”, resulting in more citizens working and/or staying underground for longer periods of time. However, owing to the particularities of underground space, the factors involved in the creation of a healthy environment are different from those involved in aboveground developments. This study thus aims to investigate the influences of various underground environment factors on users' health through a holistic approach.

Design/methodology/approach

To achieve this aim, 12 underground sites and 12 corresponding aboveground sites are selected for a large-scale questionnaire survey, resulting in 651 survey samples. The survey covers post-occupancy evaluation of health (physical and psychosocial), underground environmental quality (visual, thermal, acoustic comfort, indoor air quality and ventilation), space design and greenery. Independent-sample T-test, Pearson correlation, multiple regression modelling and structural equation modelling are used to investigate whether significant differences exist between health of underground and aboveground users, and to develop an underground environment-health model for unveiling the significant associations between underground environment factors and users' health. To cross validate the results, an objective field measurement study is further conducted on six underground sites. The objective measurement results are used to cross validate the survey results.

Findings

The questionnaire results provide the following evidence: (1) health of underground users is significantly poorer than that of their aboveground counterparts; (2) underground development users' health is significantly affected by space design, greenery and environmental quality in terms of thermal comfort, indoor air quality, ventilation and acoustic comfort but not visual comfort; and (3) amongst the various identified factors, space design has the strongest predicting effects on human health. The field study echoes the survey findings and further unveils the relationships between different environmental factors and human health.

Originality/value

The results shed light on the importance of distinguishing between underground developments and aboveground ones in various guidelines and standards, especially those related to space management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 14