Search results

1 – 10 of 122
To view the access options for this content please click here
Article
Publication date: 17 March 2020

Paschalis Charalampous, Ioannis Kostavelis and Dimitrios Tzovaras

In recent years, additive manufacturing (AM) technology has been acknowledged as an efficient method for producing geometrical complex objects with a wide range of…

Abstract

Purpose

In recent years, additive manufacturing (AM) technology has been acknowledged as an efficient method for producing geometrical complex objects with a wide range of applications. However, dimensional inaccuracies and presence of defects hinder the broad adaption of AM procedures. These factors arouse concerns regarding the quality of the products produced with AM and the utilization of quality control (QC) techniques constitutes a must to further support this emerging technology. This paper aims to assist researchers to obtain a clear sight of what are the trends and what has been inspected so far concerning non-destructive testing (NDT) QC methods in AM.

Design/methodology/approach

In this paper, a survey on research advances on non-destructive QC procedures used in AM technology has been conducted. The paper is organized as follows: Section 2 discusses the existing NDT methods applied for the examination of the feedstock material, i.e. incoming quality control (IQC). Section 3 outlines the inspection methods for in situ QC, while Section 4 presents the methods of NDT applied after the manufacturing process i.e. outgoing QC methods. In Section 5, statistical QC methods used in AM technologies are documented. Future trends and challenges are included in Section 6 and conclusions are drawn in Section 7.

Findings

The primary scope of the study is to present the available and reliable NDT methods applied in every AM technology and all stages of the process. Most of the developed techniques so far are concentrated mainly in the inspection of the manufactured part during and post the AM process, compared to prior to the procedure. Moreover, material extrusion, direct energy deposition and powder bed processes are the focal points of the research in NDT methods applied in AM.

Originality/value

This literature review paper is the first to collect the latest and the most compatible techniques to evaluate the quality of parts produced by the main AM processes prior, during and after the manufacturing procedure.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 1989

T.C. Chung and H.A. Moore

Tape automated bonding (TAB) is one technology which is becoming widely adopted for interconnecting integrated circuits to a substrate or package. Both destructive and…

Abstract

Tape automated bonding (TAB) is one technology which is becoming widely adopted for interconnecting integrated circuits to a substrate or package. Both destructive and non‐destructive test methods for evaluation of TAB bonds are analysed and criticised. The key parameters and general guidelines of a destructive beampull test set‐up are identified and presented. The key features of four different non‐destructive test methods are described and discussed. It is found that no universal solution exists for non‐destructive evaluation of TAB bonds although some methods may be more useful than others under certain conditions and constraints. Data and experimental procedure are presented for correlation of scanning laser acoustic microscopy and beampull data.

Details

Circuit World, vol. 16 no. 1
Type: Research Article
ISSN: 0305-6120

To view the access options for this content please click here
Article
Publication date: 1 June 1986

Photoacoustic Imaging (also known as thermal wave imaging) is a novel non‐destructive testing technique which is capable of providing three‐dimensional information…

Abstract

Photoacoustic Imaging (also known as thermal wave imaging) is a novel non‐destructive testing technique which is capable of providing three‐dimensional information concerning the structure and characteristics of thin solid samples by the analysis of optically induced heat flows in such materials. A particular advantage of photoacoustic imaging is its ability to obtain depth related information about sub‐surface structures in both transparent and opaque samples. The spatial variations in optical and thermal properties of suitable materials are related to such physical phenomena as cracks, discontinuities, impurities and inclusions both on and below the surface. Since the laser used to generate the heat flows is focussed to around 30 microns diameter good spatial resolution is achieved and as the image may be easily manipulated and enlarged electronically, it is easy to appreciate the alternative names — photoacoustic microscopy.

Details

Pigment & Resin Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article
Publication date: 27 July 2012

Robert Bogue

The purpose of this paper is to provide an insight into the techniques used for the non‐destructive testing (NDT) of non‐metallic structural materials, notably polymer and…

Abstract

Purpose

The purpose of this paper is to provide an insight into the techniques used for the non‐destructive testing (NDT) of non‐metallic structural materials, notably polymer and ceramic composites.

Design/methodology/approach

Following a short introduction, this paper first considers methods for testing carbon fibre‐ and glass fibre‐reinforced polymer composites. It then discusses the role of NDT in wind and wave power systems and some of the techniques used to test ceramics and ceramic composites. Brief conclusions are drawn.

Findings

This shows that the growing use of non‐metallic engineering materials in critical applications has highlighted the need for a range of advanced NDT methods. While some traditional techniques can be adapted to test these materials, in several instances novel methods are required. These include a range of thermal, ultrasonic, electromagnetic, radiographic and laser‐based technologies.

Originality/value

The paper provides a review of the techniques used and being developed for the non‐destructive testing of non‐metallic engineering materials.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 1991

P.S. Speicher

The challenge presented by advanced package development in the past five years has further accentuated the constant need for package quality and reliability monitoring…

Abstract

The challenge presented by advanced package development in the past five years has further accentuated the constant need for package quality and reliability monitoring through extensive laboratory testing and evaluation. As pin counts and chip geometries have continued to increase, there has been additional pressure from the military and commercial sectors to improve interconnect designs for packaged chips, including chips directly attached to the printed wiring board (PWB). One of the options employed has been tape automated bonding (TAB). However, this assembly technique also presents new standardisation, qualification and reliability problems. Therefore, at Rome Air Development Center (RADC), there is regular assessment (through in‐house failure analysis studies) of parts destined for military and space systems. In addition, Department of Defense (DoD) high tech development programmes, such as very high speed integrated circuits (VHSIC), have utilised all present screening methods for package evaluation, and have addressed the need for development of more definitive non‐destructive tests. To answer this need, two RADC contractual efforts were awarded on laser thermal and ultrasonic inspection techniques. Through these package evaluations, a number of potential reliability problems are identified and the results provided to the specific contractors for corrective action implementation. Typical problems uncovered are lid material and pin corrosion, damage to external components and adhesion problems between copper leads and polyimide supports, hermeticity failures, high moisture content in sealed packages and particle impact noise detection (PIND) test failures (internal particles). Further tests uncover bond strength failures, bond placement irregularities, voids in die attach material (potential heat dissipation problems), and die surface defects such as scratches and cracks. This presentation will review the specific package level physical test methods that are employed as a means of evaluating reliable package performance. Many of the tests, especially the environmental tests—e.g., salt atmosphere and moisture resistance—provide accelerated forms of anticipated conditions and are therefore applied as destructive tests to assess package quality and reliability in field use. In addition to a manufacturer's compliance with designated qualification procedures, the key to package quality lies in utilising good materials and well‐controlled assembly techniques. This practice, along with effective package screen tests, will ensure reliable operation of very large scale integration (VLSI) devices in severe military and commercial environment applications.

Details

Microelectronics International, vol. 8 no. 3
Type: Research Article
ISSN: 1356-5362

To view the access options for this content please click here
Article
Publication date: 6 February 2017

António José Ramos Silva, P.M.G. Moreira, Mario A.P. Vaz and Joaquim Gabriel

Maintenance is one of the most critical and expensive operations during the life cycle of metallic structures, in particular in the aeronautic industry. However, early…

Abstract

Purpose

Maintenance is one of the most critical and expensive operations during the life cycle of metallic structures, in particular in the aeronautic industry. However, early detection of fatigue cracks is one of the most demanding operations in global maintenance procedures. In this context, non-destructive testing using image techniques may represent one of the best solutions in such situations, especially thermal stress analyses (TSA) using infrared thermography. The purpose of this paper is to access and characterize the main stress profile calculated through temperature variation, for different load frequencies.

Design/methodology/approach

In this paper, a cyclic load is applied to an aluminum sample component while infrared thermal image is being acquired. According to the literature and experiments, a cyclic load applied to a material results in cyclic temperature variation.

Findings

Frequency has been shown to be an important parameter in TSA evaluations, increasing the measured stress profile amplitude. The loading stimulation frequency and the maximum stress recorded show a good correlation (R2 higher than 0.995). It was verified that further tests and modeling should be performed to fully comprehend the influence of load frequency and to create a standard to conduct thermal stress tests.

Originality/value

This work revealed that the current infrared technology is capable of reaching far more detailed thermal and spatial resolution than the one used in the development of TSA models. Thus, for the first time the influence of mechanical load frequency in the thermal profiles of TSA is visible and consequentially the measured mechanical stress.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 1 September 2004

Abstract

Details

Sensor Review, vol. 24 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 3 February 2012

Ryan S.H. Yang, Derek R. Braden, Guang‐Ming Zhang and David M. Harvey

The purpose of this paper is to evaluate the application of an acoustic micro‐imaging (AMI) inspection technique in monitoring solder joints through lifetime performance…

Abstract

Purpose

The purpose of this paper is to evaluate the application of an acoustic micro‐imaging (AMI) inspection technique in monitoring solder joints through lifetime performance and demonstrate the robustness of the monitoring through analysis of AMI data.

Design/methodology/approach

Accelerated thermal cycling (ATC) test data on a flip chip test board were collected through AMI imaging. Subsequently, informative features and parameters of solder joints in acoustic images were measured and analysed. Through analysing histogram distance, mean intensity and grey area of the solder joints in acoustic images, cracks between the solder bump and chip interface were tracked and monitored. The results are in accord with associated Finite Element (FE) prediction.

Findings

At defective bumps, the formation of a crack causes a larger acoustic impedance mismatch which provides a stronger ultrasound reflection. The intensity of solder joints in the acoustic image increase according to the level of damage during the ATC tests. By analysing the variation of intensity and area, solder joint fatigue failure was monitored. A failure distribution plot shows a normal distribution pattern, where corner joints have the lowest reliability and are more likely to fail first. A strong agreement between AMI monitoring test data and FE prediction was observed, demonstrating the feasibility of through lifetime monitoring of solder joints using AMI.

Originality/value

The paper indicates the feasibility of the novel application of AMI inspection to monitor solder joint through lifetime performance non‐destructively. Solder joints' real life conditions can be tracked by an AMI technique, hence solder joint fatigue failure cycles during the ATC tests can be monitored and analysed non‐destructively.

Details

Soldering & Surface Mount Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 1989

M. Forshaw

There is an increasing requirement for inspection of electronic components, assemblies and interconnections, and to meet this demand there are new developments in…

Abstract

There is an increasing requirement for inspection of electronic components, assemblies and interconnections, and to meet this demand there are new developments in inspection techniques. None of the techniques is universally applicable, but many are capable of consistent and reliable results. This paper outlines the major techniques which are available and summarises their capabilities. The limitations on types of component and boards which may be examined are listed, and the difficulties of detecting some flaws with some techniques are highlighted and the reasons considered.

Details

Circuit World, vol. 15 no. 3
Type: Research Article
ISSN: 0305-6120

To view the access options for this content please click here
Article
Publication date: 1 January 1992

Chris Hobbs

When looking at the possible ways of performing quality assurance or evaluation of materials in a non‐destructive manner, thermography rates as one of the key techniques…

Abstract

When looking at the possible ways of performing quality assurance or evaluation of materials in a non‐destructive manner, thermography rates as one of the key techniques available. This is because it offers several advantages, namely:

Details

Sensor Review, vol. 12 no. 1
Type: Research Article
ISSN: 0260-2288

1 – 10 of 122