Search results

1 – 9 of 9
Article
Publication date: 5 September 2016

Mani Senthilkumar and L. Ashok Kumar

The purpose of this paper is to design and develop an instrument for non-destructive fabric grams per square metre (GSM) measurement. This study uses the capacitance principle to…

Abstract

Purpose

The purpose of this paper is to design and develop an instrument for non-destructive fabric grams per square metre (GSM) measurement. This study uses the capacitance principle to obtain the fabric GSM. The relative permittivity of the sample fabrics changes the capacitance value. A relationship between capacitance and GSM that best fits the look-up table is obtained. Also, the developed system is applicable for all kind of fabrics both knitted and woven fabrics. The comparison study was carried out with existing test method.

Design/methodology/approach

The purpose of the study is to design and develop an instrument for non-destructive fabric GSM measurement.

Findings

The proposed non-destructive method of fabric GSM measurement using capacitance principle is designed, developed and tested. Also, the developed system is applicable for all kind of fabrics both knitted and woven fabrics. The comparison study was carried out with existing test method.

Research limitations/implications

The change in capacitance due to relative permittivity of the sample fabric is in pF range (10-12). The system can be further improved by using a capacitance sensor of sensitivity upto 1 fF (10-15). By doing so, the proposed system provides better results in terms of accuracy and resolution. The system developed can be further extended by making it online equipment which measures the fabric GSM instantaneously.

Originality/value

So far there is no non-destructive testing method available for fabric weight measurement. The newly designed and developed instrument is used to test the fabric both woven and knitted non-destructively.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 April 2020

Hassan Saeed and Sybille Krzywinski

Sewing is the most widely used and preferred method for manufacturing clothing products for extreme weather conditions and other industrial insulation systems. Multiple layers of…

Abstract

Purpose

Sewing is the most widely used and preferred method for manufacturing clothing products for extreme weather conditions and other industrial insulation systems. Multiple layers of functional fabrics in combination with insulation materials are used to thermally insulate precious body heat from its surrounding cold environment. The sewing process fixes the insulation material between the fabric layers. During conventional sewing, the insulation material is compressed along the stitch line. With the compression of the insulation material, entrapped air is forced to leave the insulation material internal structure, and heat loss occurs along the entire length of the stitch line. It results in the deterioration of thermal properties of the end product along the stitch line.

Design/methodology/approach

The amount of air, which is a decisive factor for thermal properties of any insulation system, was investigated at the level of a unit stitch length of a lockstitch. Conventional microscopy methods are not suitable to study the compression along the stitch line. With the help of X-ray tomography, the three-dimensional data of a stitch was taken and studied to measure the volume of air. The samples were prepared with conventional lockstitch sewing and a newly developed innovative sewing method “Spacer Stitching.” The results are compared with each other in terms of the amount of air present in a unit stitch length.

Findings

Calculations based on X-ray tomography images of lockstitch and spacer stitch revealed that, in the case of lockstitch, a unit stitch has a 15% of its volume made up of material and 85% of its volume by air. In comparison, the spacer stitch with the same sewing and fabric parameters has a material volume of 4.6 % and an air volume of 95.4% in a single stitch.

Practical implications

The research can positively improve the thermal properties of sewn material made for insulating purposes of conventional clothing as well as of industrial insulations.

Originality/value

There is no literature available which investigates and calculates the amount of air and material present along with a stitch line.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 June 2010

Christine Connolly

The purpose of this paper is to examine the design and capabilities of data acquisition systems, and review various interesting applications.

Abstract

Purpose

The purpose of this paper is to examine the design and capabilities of data acquisition systems, and review various interesting applications.

Design/methodology/approach

After a technical and market overview, a series of different applications is presented along with appropriate hardware and software.

Findings

Data logging over an extended period helps diagnose intermittent faults. Connectivity to PCs or remote networks is now an important feature of data loggers, and sophisticated logging stations gather data automatically and control floods and fires. Some tiny devices are available for in situ food and pharmaceuticals monitoring.

Originality/value

This paper shows how an apparently routine engineering tool takes many different forms and tackles exciting applications.

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 August 2022

Kunlun Wu, Haifeng Sang, Yanhao Xing and Yao Lu

Pipeline robots are often used in pipeline non-destructive testing. Given the need for long-range in-pipe inspections, this study aims to develop a wireless in-pipe inspection…

Abstract

Purpose

Pipeline robots are often used in pipeline non-destructive testing. Given the need for long-range in-pipe inspections, this study aims to develop a wireless in-pipe inspection robot for image acquisition.

Design/methodology/approach

In this paper, an in-pipe robot with a new mechanical system is proposed. This system combines a three-arm load-bearing structure with spring sleeves and a half-umbrella diametric change structure, which can ensure the stability of the camera when acquiring images while maintaining the robot’s flexibility. In addition, data were transmitted wirelessly via a system that uses a 433 MHz ultra-high frequency and wireless local-area network–based image transmission system. Software and practical tests were conducted to verify the robot’s design. A preliminary examination of the robot’s cruising range was also conducted.

Findings

The feasibility of the robot was demonstrated using CATIA V5 and MSC ADAMS software. The simulation results showed that the centre of mass of the robot remained in a stable position and that it could function in a simulated pipeline network. In the practical test, the prototype functioned stably, correctly executed remote instructions and transmitted in near real-time its location, battery voltage and the captured images. Additionally, the tests demonstrated that the robot could successfully pass through the bends in a 200-mm-wide pipe at any angle between 0° and 90°. In actual wireless network conditions, the electrical system functioned for 44.7 consecutive minutes.

Originality/value

A wheeled wireless robot adopts a new mechanical system. For inspections of plastic pipelines, the robot can adapt to pipes with diameters of 150–210 mm and has the potential for practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 25 April 2022

Afikah Binti Rahim and Hareyani Zabidi

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were

Abstract

The correlations between mechanical behaviour, tensile strength, and rock parameters of metasedimentary rock samples in Karak, Pahang’s New Austrian Tunnelling Method (NATM) were statistically evaluated from the rock mechanic laboratory works at the selected sections around 2,000 m of the tunnel (named as NATM-1). According to a statistical analysis, lithotypes, geological structures, and region geology have a significant impact on the mechanical behaviour of the metasedimentary rock. In the Brazilian test, the fracture behaviour of the disc specimens was highly related to the reliability and precision of the experimental data by validations of methods. In this work, the impact of different loading methods and rock lithotypes on the failure mechanism of Brazilian discs was examined utilising five different metasedimentary rock types and three different loading methods. During the loading operation, the strain and displacement fields of the specimens were recorded and evaluated using a computerised strain gauge system. The rock types, according to experimental data, have a significant impact on the peak load and deformation properties of Brazilian discs. With the method below, tensile strength point of a disc specimen is clearly regulated by the material stiffness and tensile–compression ratio. Seismic occurrences have had a substantial impact on changing the rock and exerting forces that may affect its mechanical characteristics as well as its vulnerability to weathering effects or discontinuities. As a result, the goal of this study is to look into the connection between rock mechanics and metasedimentary rock stress analysis in NATM-1, Karak, Pahang.

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Keywords

Content available
Article
Publication date: 1 August 2003

125

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 June 2003

374

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 June 2002

70

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1985

IF THERE IS one thing that is troubling the Government — or should be — as it already is a prime worry to the population of Britain (and specially those immediately affected by…

Abstract

IF THERE IS one thing that is troubling the Government — or should be — as it already is a prime worry to the population of Britain (and specially those immediately affected by it) it is the unacceptable level of unemployment.

Details

Work Study, vol. 34 no. 4
Type: Research Article
ISSN: 0043-8022

1 – 9 of 9