Search results

1 – 10 of 25
Article
Publication date: 27 December 2011

M. Wahab and P. Ramachandran

This paper discusses an experimental and numerical study to investigate the failure behavior of innovative and newly designed non-conventional cross-sectional fiber reinforced…

Abstract

This paper discusses an experimental and numerical study to investigate the failure behavior of innovative and newly designed non-conventional cross-sectional fiber reinforced composite pipes subjected to internal pressure and bending loads. An adaptive filament winder for non-conventional pipes is exclusively designed and built to fabricate the test samples used in this investigation. Experiments are conducted on triangular and rectangular cross-sectioned samples as per ASTM standards to find the internal burst pressure, bending strength, and failure modes of the pipes. Numerical analysis for the pipe loading process has been developed based on the finite element method for linear orthotropic conditions for composite pipes. The finite element analysis is used to build the model and predict the stresses imposed on the non-conventional pipes. The relationships between the applied internal pressure and peak circumferential stress, bending load, and bending strength with reference to the fillet radius are determined; and generally a good correlation is found between the experimental and numerical results. This study has extended the use of non-conventional composite pipes in structural applications.

Details

World Journal of Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3517

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 February 2019

Chiranjit Das and Sanjay Jharkharia

The purpose of this paper is to empirically examine the relationships between low carbon supply chain practices and their relationships with environmental sustainability (ES) and…

1013

Abstract

Purpose

The purpose of this paper is to empirically examine the relationships between low carbon supply chain practices and their relationships with environmental sustainability (ES) and the economic performances (EP) of firms. The study also includes an examination of the low carbon supply chain practices that are utilized by Indian manufacturing firms.

Design/methodology/approach

Through a questionnaire-based survey, the data received from 83 Indian manufacturing firms was analyzed using a variance-based structural equation modeling technique to test the proposed hypotheses.

Findings

The study indicates that carbon governance is a strategic imperative for the adoption of low carbon supply chain practices. Similarly, low carbon product and process design (LCPPD), manufacturing and logistics lead to improved ES. In addition, low carbon purchasing is positively related to the adoption of LCPPD, manufacturing and logistics. No significant relationship was found between the adoption of low carbon supply chain practices and the EP of a firm.

Practical implications

The findings of this study may assist manufacturing managers in prioritizing operational practices for the reduction of emissions.

Originality/value

This study provides two major contributions to green supply chain management. First, it provides comprehensive empirical evidence on low carbon supply chain practices that are being followed by Indian manufacturing firms. Second, this study also empirically validated a structural model of low carbon supply chain practices.

Details

South Asian Journal of Business Studies, vol. 8 no. 1
Type: Research Article
ISSN: 2398-628X

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 1 November 1964

This aircraft, or more exactly this integrated weapons system, is undoubtedly of major importance to both the British aircraft industry and the Royal Air Force. It is beyond…

Abstract

This aircraft, or more exactly this integrated weapons system, is undoubtedly of major importance to both the British aircraft industry and the Royal Air Force. It is beyond question the most exacting project which the British industry has undertaken and as such has demanded adoption of the latest techniques, materials, equipment and management procedures as well as pursuit of research and development programmes on an unprecedented scale. In terms of air power, this system represents a substantial advance on any comparable aircraft or system currently in service and will give the Royal Air Force a strike and reconnaissance capability at high and low level which is possibly unmatched by any other air force in the world. The design philosophy of the TSR‐2 as it applies to an aircraft designed primarily for the high‐speed, low‐level strike/reconnaissance role was described in detail in the December 1963 issue of Aircraft Engineering (Ref. 1) but since that initial appraisal of the TSR‐2 was written some eleven months ago, there has been a gradual release of further information concerning the aircraft, its systems, power plant and equipment. It is the purpose of this article to bring the story up to date in that particular context, although it should be emphasized that the TSR‐2 is still subject to the strictest security embargo and it will be many years before a detailed study of the complete weapons system can be published. It is not intended to cover the same ground as the earlier article (Ref. 1) attempted but, before proceeding to detailed consideration of the systems, a brief overall description of the aircraft is given for the sake of completeness.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 31 August 2023

Kiran G. Sirsath and Bhanudas D. Bachchhav

Low performance life and increased machine downtime due to wear of resistance welding copper electrode is of major concern in fin–tube resistance welding in waste heat recovery…

Abstract

Purpose

Low performance life and increased machine downtime due to wear of resistance welding copper electrode is of major concern in fin–tube resistance welding in waste heat recovery boilers. The purpose of this study is to investigate an alternative material with good wear resistance to replace the currently utilized C11000 electrolytic tough pitch (ETP) copper electrode.

Design/methodology/approach

In this study, a Cu-Cr-Zr ternary alloy was developed for fin-to-tube welding electrode by melting commercial grade electrolytic copper (99.9% purity) plates, chips of chromium, powder of zirconium at 1100°–1300°C, followed by hot forging and precipitation hardening at 450°–550°C to attain appropriate grain flow. Microstructures of Cu-Cr-Zr alloys were analysed using scanning electron microscopy coupled with energy-dispersive backscatter electron spectrometry.

Findings

Wear performance of Cu-Cr-Zr and C11000 ETP Cu was evaluated using pin-on-disc set-up with Taguchi’s L8 orthogonal array. Ranking of the parameters was done, and it was observed that the material and temperature play a very significant role in controlling the wear of an electrode.

Practical implications

Rate of fin–tube resistance welding was increased by 26% with Cu-Cr-Zr alloy. Further investigation on effect of plasma on the metallurgical characteristics of Cu-Cr-Zr is recommended.

Originality/value

Tribo-mechanical performance of newly developed Cu-Cr-Zr ternary alloy was compared with C11000 ETP copper.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0092/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 December 2021

Jagbir Singh, Mukul Kataria, Vishesh Kumar, Chandrashekhar Jawalkar and Rajendra Madhukar Belokar

The purpose of the study is to fabricate a joint between two aluminium metal matrix composites using microwave hybrid heating (MHH).

Abstract

Purpose

The purpose of the study is to fabricate a joint between two aluminium metal matrix composites using microwave hybrid heating (MHH).

Design/methodology/approach

Taguchi design of experiments was applied to conduct the experimental study. The mechanical properties such as ultimate tensile strength, micro-hardness and porosity were studied. Grey Relational Analysis was applied to understand the significance of fabrication parameters of best performing sample. The dominant factor of fabrication was analysed using ANOVA. The best performance sample was further characterised using X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray was used to analyse the elemental composition of the sample.

Findings

The Aluminium Metal Matrix Composite (AMMC) joint was successfully fabricated using MHH. The mechanical properties were mainly influenced by the fabrication factor of exposure time.

Originality/value

The formation of AMMC joint using MHH might explore the way for the industries in the field of joining.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 25